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ABSTRACT 

 

MEASUREMENT OF CO2 ADSORPTION CAPACITY ON SELECTED 

TURKISH COALS FOR CO2 SEQUESTRATION PURPOSES 

 

 

 

Bunani Keza, Bienvenu Christian 

Master of Science, Sustainable Environment and Energy Systems Program 

Supervisor: Asst. Prof. Dr. Aykut Argönül 

Co-Supervisor: Asst. Prof. Dr. Doruk Alp 

 

 

February 2021, 112 Pages 

 

The rapid industrialization in the nineteenth century caused an increase in energy 

consumption. This consumption is mainly met by burning fossil fuels which are the 

primary source of CO2 emissions. Geological storage is one option that can 

substantially reduce CO2 emissions in the atmosphere. In this work, the storage 

capacities of four different coal basins in Turkey have been estimated: Soma, 

Tunçbilek, Tekirdağ-Saray and Afşin-Elbistan.  

First, CO2 adsorption capacities of samples from the four coal basins were measured 

using the volumetric method at 40 °C and incremental pressures up to 85 bars. 

Four different adsorption models were found to fit experimental data well (Langmuir 

modified, Langmuir modified+k, D-R modified and D-R modified +k) with an 

average relative error of less than ±7 %. Among these, the D-R modified model was 

the best fitting model. 

Accordingly, maximum adsorption capacity for all coal samples (all on "daf" basis) 

was calculated. Moreover, the storage capacities of the four coal basins were 

calculated to be 62.1 Mt CO2 for Soma, 17.73 Mt CO2 for Tunçbilek, 4.91 Mt CO2 

for Tekirdağ-Saray and 29.89 Mt CO2 for Afşin-Elbistan. It was estimated that Soma 
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coal seam could store the CO2 emissions from a typical 100 MW coal power plant 

for about 102 years, Tunçbilek for about 29 years, Tekirdağ-Saray for about 8, and 

Afşin-Elbistan for 49 years. 
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ÖZ 

 

KARBONDİOKSİT DEPOLAMA AMACIYLA ÇEŞİTLİ TÜRK 

KÖMÜRLERİ İÇİN CO2 YÜZE TUTUNMA KAPASİTESİNİN ÖLÇÜMÜ 
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Şubat 2021, 112 sayfa 

 

19. yüzyılda hızlı sanayileşme ile birlikte enerji tüketimi de ciddi boyutta artmıştır. 

Bu tüketim büyük oranda, karbon-dioksit (CO2) salınımının ana kaynağı olan fosil 

yakıtların yakılması ile karşılanmaktadır. CO2’in yeraltı kayaçlara basılıp 

saklanması, havaya salınımı büyük ölçekte azaltacak yöntemlerden biridir. Bu 

çalışmada, Türkiye’deki dört önemli kömür yatağının; Soma, Tunçbilek, Tekirdağ-

Saray ve Afşin-Elbistan, saklama sığası (depolama kapasitesi) araştırılmıştır.  

İlk olarak, bu dört yataktan gelen kömür örneklerinin CO2 tutunma sığası 

(adsorpsiyon kapasitesi) volumetrik yöntem ile 40 °C’de ve 85 bar basınca kadar 

ölçülmüştür. 

Dört farklı tutunma sığası matematik modeli (Langmuir modified, Langmuir 

modified+k, D-R modified and D-R modified+k) deney sonuçlarının 

modellenmesinde kullanılmış ve bunlar deney sonuçlarına %7’den az bir hata ile 

eşleşmiştir. Bu modellerin arasından D-R modified modeli en iyi (en az hata ile) 

eşleşen modeldir. 
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Bunun sonrasında, bütün kömür örnekleri için (kuru külsüz bazda) azami 

“adsorpsiyon sığası” değerleri hesaplanmıştır. Sonuç olarak, dört kömür yatağının 

toplam CO2 saklama sığalarının şu kapasitelere denk geldiği hesaplanmıştır; Soma 

için 62.1 Mt, Tunçbilek için 17.73 Mt, Tekirdağ-Saray için 4.91 Mt, ve Afşin-

Elbistan için 29.89 Mt. Bu değerlere göre, 100 MW’lık bir kömür santralinin yıllık 

CO2 salınımı temelinde, yaklaşık olarak Soma’da 102 yıl, Tunçbilek’de 29 yıl, 

Tekirdağ-Saray ’da 8 yıl ve Afşin-Elbistan’da 49 yıla eşdeğer CO2 salınımı 

saklanabileceği öngörülmektedir. 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Climate change and global response 

The presence of greenhouse gases or active radiative gases (water vapour, carbon 

dioxide (CO2), methane (CH4), nitrous oxide (N2O), chlorofluorocarbons (CFCs) and 

ozone (O3)) in the atmosphere is what makes our life on earth possible. They do this 

by keeping our planet warm enough to support life as we know it [1], [2]. For the 

past few decades, this process known as “greenhouse effect” has been viewed as 

threatening due to the increase in global mean temperature and climate change. This 

is due to the rapid rise in the concentration of anthropogenic greenhouse gases in the 

atmosphere. CO2 is the most dominant of them, accounting for 76 % of the total 

emissions, with an average lifetime in the atmosphere of hundreds of years [2], [3]. 

The rapid growth of industrialization in the nineteenth century caused the increase 

in energy consumption, mainly from burning fossil fuels which are the primary 

source of CO2 emissions. The atmospheric concentration of CO2 was stable 

throughout Human evolution at approximately 280 ppm. However, it significantly 

increased from 280 ppm pre-industrial period to 410 ppm in 2018 with an annual 

rate increase of 2.2 ppm [2], [4], [5] as shown in Figure 1.1. Fossil fuel share in the 

energy portfolio remains at more than  80 %, and studies show that global 

consumption of fossil fuels will continue to be the primary source of energy, at least 

for the next few decades [6]–[10]. 
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Figure 1.1. Global yearly mean CO2 concentration from 1960 to 2018 [11] 

 

According to the IEA (International Energy Agency), carbon dioxide emissions have 

already reached two-thirds of the point-of-no-return threshold (450 ppm of CO2), 

which will result in a 2 °C increase in the current global temperature [12]–[14]. 

To tackle climate change, caused mainly by the combustion of fossils fuels, the 

United Nations Framework Convention on Climate Change (UNFCCC) convened in 

2015 in Paris. As a result, an agreement was reached. It required all parties to sign 

and submit commitments and targets to be achieved to address this issue of global 

warming. Although this accord leaves individual governments to determine the terms 

to address the climate change issues in their context, the Paris agreement creates 

robust international transparency. It requires that the successive policies be more 

substantial than previously taken [15]–[17].  
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The Paris agreement is widely known for restraining global temperature below two 

°C above the pre-industrial level. Moreover, this implies that the global emissions of 

CO2, which happens to account for over 80% of the global warming, be limited to 42 

and 22 billion tons in 2030 and 2050 [18]. If nothing is done to mitigate the increase 

of anthropogenic CO2, its concentration will reach 450 ppm in just three decades, 

increasing the average global temperature by 2°C-3°C [2]. Different studies [17], 

[19]–[21] show that this increase will have catastrophic consequences. To mention a 

few, It will cause polar region ice to melt, causing the sea levels to rise,  destruction 

of biodiversity, human health risks, impact on wildlife and ecosystems, pressure on 

food security, changing weather patterns and various extreme weather events [18].  

Scientists have been exploring different approaches to reduce carbon dioxide 

emissions, as shown in Figure 1.2. These are, 1) mitigation through geo-engineering, 

2) removal through ocean fertilization, biological sequestration, or 3) reducing the 

emissions of CO2 in the atmosphere through improved efficiency, fuel switching, 

and Carbon capture and storage (CCS) [22]–[24].  

 

Figure 1.2. CO2 mitigation options to reduce climate change-related issues 

 

Of all these alternatives, the only technology that can substantially reduce CO2 

emissions from the energy industry is carbon capture and storage (CCS) in deep 

saline formations, drained oil and gas fields, oceans, or non-minable coalbeds [6], 

[9], [25].  
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CHAPTER 2  

2 GEOLOGICAL CO2 STORAGE   

The term CO2 capture and storage (CCS) refers to the method of collecting, 

transporting, and safely disposing of carbon dioxide from the air or other pollution 

sources to the storage site and its final stage in underground reservoirs (coal seams, 

depleted oil and gas reservoirs, methane hydrate reservoirs, shales or underground 

saline aquifers) [23], [26], [27]. 

2.1 Worldwide CO2 storage projects  

The continued reliance on fossils fuels requires developing technologies to facilitate 

the Carbon Capture and Storage (CCS) if one wants to reduce the accumulation of 

CO2 in the atmosphere. The geological storage projects worldwide have been mainly 

focused on saline aquifers and depleted oil and gas reservoirs, as shown in Table 2.1. 

This section intends to inform the readers of several CCS projects worldwide. 

For the past few years, the US Department of Energy has invested in CCS projects 

development programs known as the carbonSAFE projects [28]. These projects 

focus on developing geological storage for 50+ megatons (Mt) of carbon dioxide 

from industrial sources across the US.  

To this date, 13 pre-feasibility and six complex feasibility projects are underway, 

and more details can be found in [28], [29].  

Several other major projects have been carried out in the past. Table 2.1 gives details 

on some of the current and past major CO2 storage projects worldwide.  
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Table 2.1. Worldwide CO2 storage projects. 

Name of the project & 

Company 

Country Date of    

operation 

Depth 

(m) 

Reference 

In-salah (BP, Statoil, Sonatrach) Algeria 2004-2011 Depleted gas 

reservoir /1900m 

[30]–[34] 

Ketzin Project (GFZ. and Ketzin 

partners ) 

Germany 2008-2013 Sandstone 

reservoir / 630m  

[35]–[37] 

Sleipner project (Statoil) North 

Sea, 

Norway 

1996- A deep saline 

reservoir 800-

1000m 

[27], [38], [39] 

Weyburn-Midale (Cenovus 

Energy, Apache Canada, PTRC) 

Canada 2000- EOR. in 2 

carbonate fields, 

1500m  

[40]–[43] 

Snøhvit project (Statoil ASA., 

Petoro AS, Total E&P, Norge 

AS) 

Norway 2008-  Saline Tubasan 

sandstone 

formation 2600m 

below the seabed 

[33], [44]–[46] 

Otway Basin project CO2CRC 

(Cooperative Research Centre) 

Australia 2008-2011 Depleted gas 

reservoir (2000m) 

[47]–[49] 

Cranfield project (SECARB) The USA. 2009-2015 Saline reservoir, 

Cranfield oil field 

[33], [50]–[52] 

 

2.2 CO2 storage in coal-seams 

Coalbeds are both the source and reservoir rock for a significant amount of methane 

gas, known as coalbed methane (CBM). This gas, which has been generated during 

the coalification process, is stored in coals through different mechanisms: 

 Adsorbed gas molecules within micropores   

 Free gas (in cleats or fractures)  

 And as a gas dissolved in groundwater within coal fractures. 
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Like the primary porosity in conventional oil and gas reservoirs, the micropores in 

coal are the coal’s primary gas storage. Gas molecules are generally adsorbed within 

these micropores, and these micropores are responsible for more than 90 % of the 

gas storage in coalbeds [53]. The hydrostatic pressure retains the adsorbed gas 

through geologic time. If the pressure is reduced by erosion or other factors, the 

adsorbed gas is desorbed, leaving little or no gas behind. 

CO2 sequestration in coal seams is the process of storing the captured CO2 in deep 

unminable coal seams. Unminable seams are either too thin, too deep, high in sulfur 

or too low in calorific value are considered non-minable because they are not 

economically feasible [26], [54]. 

The use of coal seams as a reservoir rock for CO2 storage has gained attention for 

the past few decades, and many studies have been published, and others are still 

unfolding [23], [27], [29], [55]–[68]. There are significant amounts of water and 

methane gas in the cleats and pores of a coal-seam. This methane gas was generated 

due to the microbial, thermal and catalytic decomposition of the organic material 

found in coal seams [69]. A portion of this methane gas is produced by pumping out 

the water existing in the cleats. Once CO2 is injected into the coal beds, it gets 

adsorbed on the coal pore matrix replacing the remaining methane gas, and the 

adsorbed CO2 permanently remains adsorbed in the coal. It has been experimentally 

shown in different studies that molecules of CO2 are more preferentially adsorbed in 

the coal matrix than methane molecules [23], [70]–[74]. Generally, in coalbeds, 

molecules of CO2 or CH4 are physically adsorbed; this means that they can easily be 

desorbed by reducing pressure or by heating; see chapter 5 for more details. 

Several studies have estimated the worldwide storage capacity of coal seams to be 

between 3Gt-200Gt [7], [23], [61], [67], [75]. These estimates are in most studies 

based on the assumption that two molecules of CO2 are adsorbed for every CH4 

molecule in coal [67]. 
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CHAPTER 3  

3 COAL DEPOSITS OF TURKEY  

3.1 Lignite resources of Turkey: geology and reserves 

Lignite (a type of coal with low heat content) deposits in Turkey cover 110 000 km2, 

approximately 15 % of the entire land. According to their age, 2 % is Eocene, 6 % 

is Oligocene, 41 % is Miocene, and 51 % is Pliocene in age. They are widely 

distributed throughout the country, as shown in Figure 3.1 and were formed under 

variable tectonic regimes during geological times, explaining the differences in 

genetic and quality variations [76]. There are four main basins in Turkey: Central 

Anatolia, covering 558.9 km2, around 50 % of the total area; Aegean basin covers 

345.3 km2; Thrace basins 219.8 km2, and East Anatolia 184.9 km2  [77].  

The lignite reserves estimation in Turkey started as early as a century ago, in 1940, 

and were reported to be around 1.13 gigatons (Gt) [77]. The reserves estimation 

improved throughout the years as more fields kept being discovered. Table 3.1 lists 

years in which assessment had been done, the body which published the data, the 

reference, and the reserve estimation. Over the years, the values have discrepancies 

mainly due to the confusion on the difference between possible, probable, proved 

reserves. Nevertheless, they show how much progress has been made both in 

exploration and research. 
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Table 3.1. Turkey’s lignite reserves estimation from 1940-2011 [77] 

Publisher of the information Year 
Total reserve estimated  

(gigatons, Gt) 

Electrical Power Resources Survey & 

Development Administration 
1940 

Possible: 1.13  

Probable:0.143  

General Directorate of Mineral Research and 

Exploration (MTA) 

1945 0.201  

1959 0.231  

General Directorate of Turkish Coal 

Enterprises (TKI) 
1973 8.337  

World Energy Council Turkish National 

Committee 

1986 7.84  

2002 8.074  

2008 11.4  

TKİ (2012) &  MTA (2010) 2011 12.6  

 

As of 2018, the lignite reserves are about 17.46 Gt, whereas hard coal reserves 

amount to 1.3 Gt [78].  

3.2 Geological setting of the basins studied  

This study used coal samples obtained from Tunçbilek (TU), Afşin-Elbistan (AFE), 

Soma (SO), and Tekirdağ-Saray (TS) basin as shown on Figure 3.1. 

3.2.1 Soma basin 

Soma coal basin is located in the Aegean region in western Turkey, about 90 km 

away from Manisa city. It is one of the first reserves explored in Turkey after the 

establishment of MTA in 1935. It contains a total reserve of around 861.45 Mt of 

coal [79]. The total tons extracted from the open pit per year adds up to 10.4 Mt. 7.7 



 

 

 

12 

Mt of the produced coal is used by six units’ coal-fired power plants in Manisa, with 

a capacity of 990 MW, while 2.7 Mt is used for domestic and industrial purposes 

[80], [81]. This basin which belongs to the Miocene epoch is divided into three coal 

seams, (lower-seam), (middle-seam) and (upper-seam) [82]. In thickness, the Soma 

coal formation is around 325 m. It primarily consists of (1) conglomerate and 

sandstone-dominated layers with an average thickness of approximately 100 m. (2) 

Lower lignite seam, with an average thickness of approximately 15 m. (3) layers of 

limestone and sandstone, which consist of the middle lignite seam, is approximately 

50-60 m thick [83], [84]. Figure 3.2 show a stratigraphic columnar section of the 

Soma lignite deposit. The lower lignite seam is the thickest, with around 15-22 m, 

and it lies between the marlstone unit and claystone units.  

3.2.2 Tunçbilek basin 

The Tunçbilek district is located in the Western part of Turkey and is about 60 km 

away from Kutahya city. The Miocene aged Tunçbilek-Domanic basin is located in 

western Anatolia-Turkey, and it includes two series of Neogene sediments [85]. The 

lower one is called the Tunçbilek series and is the one that contains approximately 

317.73 Mt of lignite potential [79]. The upper one is called the Domanic series, and 

it lies on the Tunçbilek series, and an unconformity separates these formations. 

Figure 3.3 shows that the coal basins of Tunçbilek also contain non-coal layers and 

are found comparatively less in the upper and lower parts of the coal seam while they 

are more widespread in the middle parts [84].  
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Figure 3.2.The stratigraphic columnar section of the Soma coal basin [86]. 
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Figure 3.3.The stratigraphic columnar section of the Tunçbilek coal basin [87]. 
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3.2.3 Tekirdağ-Saray basin 

This basin consists of three sectors: Edirkoy, Kucukyoncali and Safaalancali, all 

situated in the Thrace region. This district contains 141.17 Mt of coal with a calorific 

value of less than 2000 kcal/kg, indicating a low-grade quality coal [79], [88]. 

Lignite formations are seen in two separate seams, which have economic value. The 

thickness of the coal-bearing series increases from the north to the south. The average 

thickness of the coal-bearing series in the field is nearly 110 meters. The coal is 

overlain by Pliocene aged clay, sand, sandstone, conglomerate and limestone, as 

shown on the columnar section of the basin in Figure 3.4 [89]. 

3.2.4 Afşin-Elbistan basin  

Afşin-Elbistan is situated in the South-East of Turkey, in the Kahramanmaraş 

province, within the Afşin and Elbistan districts. Majorly, it is a Pliocene basin 

covering a total area of 900 km sq. [90]. The basin possesses a reserve of 

approximately 4.642 billion tons (Gt) and is the largest basin and one of the most 

important Turkish basins, especially for electricity generation [79]. It is a set multi-

layered lignite sequence consisting of many seams interfacing with humic1 and coal 

limnic sediments such as clay and gyttja2 deposits see Figure 3.5. 

 

 

 

                                                 

 

1 Humus are organic compounds found in soil or peat material  
2 Gyttja refers to “a formation that is of sapropelic, black or brown mud with organic matter and 

has many gastropod shells” 



 

 

 

16 

 

 

Figure 3.4:The stratigraphic columnar section of the Tekirdağ-Saray coal basin [89]. 
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Figure 3.5.The stratigraphic columnar section of the Afşin-Elbistan coal basin. 

[91]. 

 

3.3 CO2 storage in coal seams in Turkey 

CO2 storage activities in coal seams in Turkey have been mostly focused in the 

district of Zonguldak. This region is preferred for storage because it contains deeper 

seams, difficult and expensive to mine [92]. The Zonguldak coal basin is the only 

Turkish hard coal region, with coal seams suitable for coalbed methane (CBM) 

production [93]. In 2009, Sinayuc and Gumrah [66] used a simulation program to 

predict the basin’s capacity for enhanced coalbed methane recovery (ECBM). 

However, in their study, they found that a CO2 injection rate of nearly 5192 t/y would 
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only represent 0.3% of the annual CO2 emission from the Zonguldak Catalagzi 

power plant. Therefore, they concluded that the project aiming at enhanced coalbed 

methane (ECBM) recovery would be much more feasible and successful than carbon 

dioxide storage. In 2012, Kok and Vural [94] drafted a clean coal technology 

roadmap for Turkey. They identified major CO2 emitters such as coal-fired power 

plants, cement and iron-steel factories, and oil refineries and matched them with the 

nearest storage location. Their study’s conclusion is summarized in Table 3.2. Until 

now, there is no CO2 storage reported in coalbeds in Turkey [12]. However, through 

the European Union (EU) seventh framework research program, a project was 

recently carried out to estimate Turkey’s coal mines’ storage capacities. The 

estimated storage capacities were found to be between  3.7-13 Mt and 5.6-32 Mt CO2 

for the Soma and Zonguldak fields, respectively [95]. 

 

Table 3.2. Potential CO2 capture and storage locations in Turkey [94]. 

 

  

  Storage location CO2 sources  (Coal Power Plants, Iron-Steel, Cement and Oil 

Refineries: they will be all referred to Power Plants in this table) 

Manisa Soma lignite  Power plants, in Izmir, Manisa and Aydin  

Kutahya Tavsanhi lignite  Power plants around Kutahya  

Bursa lignite  Power plants, in Bursa and Kocaeli 

Çayirhan and Kirsehir lignite  Power plants in Ankara and Kirsehir  

Mugla-Yatagan lignite  Power plants in Mugla  

Zonguldak hard coal  Power  plants in Zonguldak  

Oil/gas fields in Thrace  Plants around Kirklareli  

Kahraman Maras-Elbistan lignite reserve  Power plants in Kahraman Maras, Osmaniye and Hatay  
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CHAPTER 4  

4 STRUCTURE OF COAL 

4.1 Origin and formation of coal 

Coal is a combustible rock primarily formed from ancient plants accumulated 

in fens, bogs, salt marshes and some swampy anaerobic environment near the 

surface where the complete decay of the materials was prevented [96], [97]. 

Once the terrestrial plants (leaf, stem) in swampy areas die and fall off, they get 

covered with water, silt, sand, and other sediments. Under normal conditions, these 

materials would decay. However, the sediments and water prevent the plants material 

from reacting with oxygen and decomposing to carbon dioxide and water [98]. This 

mixture of plants and sediments is then attacked by anaerobic bacteria and converted 

into simpler forms, mainly pure carbon and simple carbon and hydrogen [99], [100]. 

The initial stage of the decay of this woody and soft material is known as peat.  

Over several millions of years, this peat material accumulates. As the new sediments 

are deposited, it gets buried deep, with pressure, time, and temperature peat 

undergoes chemical and physical changes that, over time, progress through different 

ranks of coal [97]. This process is known as “coalification”, and it is the geochemical 

process that transforms peat to lignite, lignite to sub-bituminous, sub-bituminous to 

bituminous coal and finally to anthracite. Once peat is compressed to a point where 

the inherent water content is less than 75%, it is referred to as coal [101]. In many 

parts of the world, this peat material is used as fuel after being dried up. It is 

considered low-quality fuel and environmentally damaging because it burns poorly 

with a lot of smoke [96], [102]. Figure 4.1 illustrates the stages of coal maturation 

from plants' deposition until the anthracite coal formation. It shows the process 

involved and describes the main chemical reactions involved at every stage.  
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Figure 4.1. The coalification process. (Figure is modified from Miller [103]) 

4.2 Coal composition 

Coal is composed mainly of organic material (macerals), mineral matter and water. 

The organic component maceral is responsible for the combustion energy and is the 

source of methane gas. Maceral is also the provider of the internal surface on which 

gases are adsorbed and stored.  

The macerals are the (optical) microscopically identifiable components in coal with 

different physical and chemical properties such as color, shape, morphology, and 

degree of preservation of cell structure, reflectance level, and fluorescence intensity 

[104]. They originate from the dead plant tissues that have been compacted with 

other sediments at the time of deposition and have been chemically altered through 

the coalification process.  
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Macerals are classified into three groups (vitrinite, liptinite, inertinite) according 

to the degree of their reflectance.  

Vitrinite macerals are produced from humic substances formed due to lignin and 

cellulose modification products (e.g., stems, trunks, roots, and branches) [105]. The 

maceral group of inertinite originates from the same material as the vitrinite group 

but has a higher aromatization and condensation degree. Compared to the vitrinite 

group, their reflectance is considerably higher, notably in low and medium-rank 

coals. They have higher carbon and lower hydrogen and oxygen contents compared 

to vitrinite group macerals at the same rank because they were degraded through 

carbonization, oxidization, or subjected to chemical or bacterial attacks prior to 

coalification, usually in the peat stage [100], [104], [105]. The liptinite group 

consists of macerals derived from hydrogen-rich plants such as pollen, spores, 

cuticles, waxes, resins and algae. This group is chemically more resistant to physical 

and chemical degradation than other macerals [100], [101].  

4.2.1 Coal rank 

The rank of coal indicates the stage reached by coal during the coalification process. 

Although coal is described in singular, it differs from type to type. The difference 

depends on the degree of metamorphism to which the peat material has been exposed 

for millions of years. Table 4.1 describes different types of coal and shows the 

properties and compositions of these coals. It shows that lignite is classified as low-

rank coal or the immature one, whereas anthracite is ranked as the most mature coal 

type with more than 95 % carbon content [63], [99].  
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Table 4.1. Coal rank classification and uses [105] 

Low-Rank Coals High-Rank Coals 

Lignite Sub-bituminous Bituminous Anthracite 

17 % of total world 

coal resource 

30 % of total world 

coal resource 

52 % of the total 

world coal resource 

1 % of total world coal 

resource 

Used mainly in 

power generation 

Power generation, 

cement manufacture 

Manufacture of iron 

and steel 
Domestic/industrial 

 Carbon and the heating values increase  

                                             Moisture and ash content increase 

 

For their industry uses, high-rank coal is more desirable since it burns more cleanly, 

with high heating value, and it leaves fewer ashes. Vitrinite macerals are the most 

abundant of many coals, and they change continuously through the coalification 

process. It is often used to determine coal’s rank since its characteristics are relatively 

easy to distinguish under the microscope [106].  

4.2.2 Pore size distribution in coal 

It is commonly accepted that void space in coals is a dual system of pores and cleats, 

as shown in Figure 4.2. Like in many other porous rocks, coals’ porosity refers to 

the coal matrix’s void volume. Total void volume is the sum of matrix pore space 

and the cleat/fracture system volume in the coalbed. In coal, there are mainly two 

types of cleats. Face cleats, which are dominant, are mostly continuous throughout 

the coal seam, and their surfaces are widely spaced. The butt cleats, on the other 

hand, are not continuous, and in many cases, they end at the intersection with face 

cleats [107], [108]. 
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Figure 4.2. Cleat system in coal.  

There are pores of different sizes in the coal matrix, and they are divided into four 

categories [23]. Tiny pores (sub-micropores) of diameters less than 0.8 nanometers, 

small pores (micropores) with diameter between 0.8 and 2 nanometers, medium 

pores (mesopores) with pore diameter between 2 and 50 nanometers and bigger pores 

(macropores) with pore diameter greater than 50 nanometers.  

The cleats or fractures system are usually filled with water, whereas pores existing 

in the matrix contain the adsorbed gas (e.g. methane) [63]. Smaller pores have higher 

surface area compared to bigger pores; therefore, the adsorbed amount will be 

proportional to the pore sizes in the particle [109]. 

In the laboratory, several techniques are commonly used to analyze the size and 

distribution of pores. Some of these techniques are mercury intrusion, thin section 

analysis, image analysis, and gas adsorption [110]. Different methods are used to 

measure porosity in coals, such as scattering methods using X-rays/electron 

scattering, fluid probe methods, and microscopic methods such as optical/scanning 

electron microscopy (SEM) [23].  
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The most commonly used in laboratories is the fluid probe method. In this method, 

the common fluids used are helium, CO2, nitrogen and methane. These fluids are 

preferred due to their small molecular size, as shown in Table 4.2 below. However, 

in coalbeds and shale reservoirs, with micropores less than 2 nm, helium is preferable 

because of its size and inertness. Helium has the smallest molecular size among other 

gases, and it is expected to permeate the entire coal structure and produce a more 

precise measurement of the void volume [111].  

Table 4.2. The molecular diameter of gases used in porosity measurements  

Gas Molecular diameter (nm) at 

𝟐𝟓°𝑪 [112] 

Kinetic diameters (nm) 

[113] 

Helium (He) 0.216 0.260 

Nitrogen (N2) 0.370 0.364 

Methane (CH4) 0.406 0.38 

Carbon dioxide (CO2) 0.454 0.33 
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CHAPTER 5  

5 THEORY OF ADSORPTION 

Adsorption is essentially an exothermic process at the interface of two phases in 

which molecules of a compound in gas or liquid states accumulate at an adsorbent 

surface [114].  

The adsorbents’ surfaces are unsaturated and therefore have active sites ready and 

waiting to interact with other molecules. When the intermolecular forces between 

solid-gas overpower those existing in gas molecules themselves, gas molecules will 

start accumulating on the solid’s surface, and this process is what we refer to as 

adsorption of a gas on a solid [115].  The term desorption refers to the ejection of 

the previously adsorbed molecules from the solid surface. The term absorption or 

“imbibition”, on the other hand, refers to the diffusion or penetration of molecules 

inside the bulk volume of the other material (i.e. absorbent) [116]. Therefore, the 

adsorption process is a surface phenomenon at the surface, whereas, in absorption, 

molecules permeate or dissolve inside a liquid or solid [117]. The adsorption process 

can take place in two ways: physical adsorption and chemical adsorption. 

5.1 Physical adsorption 

Physical adsorption, which is also referred to as physisorption or Van der Waals 

adsorption, occurs when the forces involved are intermolecular Van der Waals forces 

between the adsorbate and adsorbent. Physical adsorption usually consists of the 

formation of thick, multiple layers on the adsorbent surface. This process is 

reversible by heating or decreasing pressure, and molecules can easily desorb from 

the surface due to the weak force [118], [119].  
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5.2 Chemical adsorption 

Chemical adsorption, sometimes referred to as chemisorption, occurs due to 

chemical bonding between adsorbate and adsorbent. These covalent, hydrogen or 

ionic bonds are much stronger than van der walls forces. Thus, this process is 

considered to be “almost” irreversible [120]. Chemical adsorption occurs as a 

monolayer structure and stops when the active or available sites are full (occupied).  

5.3 Adsorption isotherms  

The number of moles adsorbed by a solid is dependent on the temperature and 

pressure. Moreover, it depends on both the solid (adsorbent) properties and the 

adsorbing gas [98]. The plot of change in the adsorbed amount against pressure at 

constant temperature is called the adsorption isotherm. According to the IUPAC 

classification, there are six types of adsorption isotherms (see Figure 5.1).  

 

Figure 5.1. Adsorption isotherms according to the IUPAC classification [121] 

Type 1 isotherms represent the adsorption of gas molecules to the solid having 

micropores. This type reaches an equilibrium point, indicating the monolayer’s 
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completion or the complete filling of the accessible pores by the gas molecules. 

[122]. Type II Isotherms are found typically in non-porous or macroporous 

adsorbents. The saturation point is not attained, and therefore the adsorption occurs 

in successive layers [120]. Type III isotherms are usual for non-porous or 

macroporous adsorbent with weak adsorbent-adsorbate interactions. Type IV 

isotherms are typical in mesoporous adsorbents, and they are characterized by a 

hysteresis loop, which indicates the filling of mesopores by capillary condensation 

[123]. Type V isotherms are typical for macroporous adsorbents and are also 

characterized by the hysteresis loop. The stepwise formation of multilayer on non-

porous adsorbent surfaces is classified as Type VI in IUPAC classification, but it is 

rare [121].  

5.4 Adsorption equilibrium equations 

Various adsorption models are used in the literature to describe adsorption processes 

[124], [125]. Some of the most commonly used for CO2 adsorption in coals are given 

in details in the following sections.   

5.4.1 Langmuir isotherm 

Irving Langmuir proposed a model in 1918 [126]. This model is which is used to 

describe a type I isotherm see Figure 5.2, has been widely used in literature to 

measure CH4 and CO2  adsorption on solids [117], [127]–[133]. In this model, several 

assumptions are made [120]: (1) the adsorption is localized, this means molecules 

remain at the site of adsorption until desorbed, (2) the heat of adsorption is taken as 

constant (thus, all sites are energetically the same, and there are no interactions 

between adsorbate molecules), (3) each site can hold only one adsorbate molecule, 

(4) the surface of the adsorbent is covered only by a monolayer of adsorbed 

molecules.  
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Langmuir adsorption model is expressed as follows [121]: 

𝑛𝑎𝑑𝑠 =
𝑛𝑚𝑎𝑥⋅ 𝑃

𝑃𝐿 + 𝑃
  

  

5.1 

where 𝑛𝑎𝑑𝑠  : moles adsorbed, (mol/g), P: the pressure of adsorbate, (bars), 𝑛𝑚𝑎𝑥 : 

maximum adsorption capacity (mol/g), PL: Langmuir pressure that corresponds to a 

half of  𝑛𝑚𝑎𝑥 ( bars) see Figure 5.2. 

 

Figure 5.2. Langmuir isotherm. 

 

Modified Langmuir model  

Equation 5.1 can also be expressed:  

  𝑛𝑎𝑑𝑠 = 𝑛𝑚𝑎𝑥 ⋅
𝜌𝑔

𝜌𝐿 + 𝜌𝑔
 

where  𝑛𝑚𝑎𝑥 is the maximum adsorption capacity and 𝜌𝐿 is the density at which the 

half of 𝑛𝑚𝑎𝑥 is adsorbed. 
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A modified version of the Langmuir model [134]  includes a correction factor that 

enables it to be used with excess adsorption.  

The modified equation is expressed as: 

𝑛𝑒𝑥 = 𝑛𝑚𝑎𝑥 ⋅ (1 −
𝜌𝑔

𝜌𝑎
)

𝜌𝑔

𝜌𝐿 + 𝜌𝑔
 

 

5.2 

 

where 𝜌𝑎  and 𝜌𝑔  are adsorbed phase density and free gas density, respectively.   

Another form which is widely used is the Langmuir modified +k model [134]–[136]        

𝑛𝑒𝑥 = 𝑛𝑚𝑎𝑥 ⋅ (1 −
𝜌𝑔

𝜌𝑎
)

𝜌𝑔

𝜌𝐿 + 𝜌𝑔
+ 𝑘 ⋅ 𝜌𝑔 

 

5.3 

This k-term is added to account for volume changes due to compression and swelling 

in coal and errors in void volume calculations [135].  

5.4.2 The Brunauer-Emmett-Teller (BET) equation 

The Langmuir isotherm is not valid in many cases, especially for non-porous or 

macroporous solids where the adsorption does not reach a saturation point. The 

surface area’s determination also presents a significant challenge, which the 

monolayer theory could not address. If the adsorption capacity were limited to a 

monolayer, the determination of adsorption equilibrium from experimental data with 

a known gas molecular size would be enough for the surface area’s estimation. 

However, the main issue is that, in chemisorption, the adsorption sites are widely 

spaced, and therefore, many sites are left unoccupied [137].  

Multilayer formation begins at pressures far below the amount needed for the 

completion of the monolayer. Hence it is not possible to determine the monolayer 

capacity from experimental data. In 1938 Stephen Brunauer, Paul Emmett and 
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Edward Teller [138] addressed this issue by developing a model to account for 

multilayer adsorption and extract information on monolayer capacity. 

This model was based on several assumptions (i) there is no interaction between 

neighboring adsorbed molecules, (ii) the heats of adsorption evolved to fill the 

second layer, and subsequent layers of molecules are equal to the heat of 

condensation/liquefaction of adsorbate molecules (iii) at saturated vapor pressure, 

adsorbate liquefies (condenses to liquid) on the surface of the solid, leading to 

infinite layers [120], [139]–[141]. The BET isotherm model is valid in the range 

between relative pressure values of (0.05 < 𝑃/𝑃𝑜 < 0.35 − 0.40 ) [137]. 

The linearized form of the BET equation is expressed as: 

𝑃

𝑉 ⋅ (𝑃𝑜 − 𝑃)
=

1

𝑉𝑚⋅𝐶
+
(𝐶 − 1) ⋅ 𝑃

𝑉𝑚 ⋅ 𝐶 ⋅ 𝑃𝑜
  

  

5.4 

V: volume of adsorbed vapor at STP. 

Vm: monolayer capacity at STP. 

P: partial pressure of the adsorbate 

Po: saturation vapor pressure of the adsorbate  

C: is a constant 

𝐶 = 𝑒
|∆𝐻1|−|∆𝑣→𝐿𝐻|

𝑅⋅𝑇  

In this expression, ∆𝐻1 is the enthalpy of adsorption of the first layer of gas, and 

∆𝑣→𝐿𝐻  is the enthalpy of liquefaction of the gas.   
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5.4.3 Polanyi’s potential theory  

In 1914, Polanyi [142] assumed lines of the same potential energy around the 

adsorbent (solid) into which the adsorbing gas molecules fell.  

The region between each set of equipotential lines corresponds to a particular 

adsorbed volume. As shown in Figure 5.3, Polanyi ascribed a volume 𝜀𝑖 to the space 

between the ith equipotential lines.  

The potential energy of equipotential lines W is assumed to be independent of the 

temperature so that the expression 5.5 will essentially be an isotherm equation [143].  

The characteristic adsorption curve expression: 

𝑊 = 𝑓(𝜀)       5.5 

 

 
 

Figure 5.3. The schematic representation of  Polanyi’s potential theory [144]. 

 

The adsorption potential is defined as the energy required to compress the gas from 

a certain pressure P to the saturation pressure Po. Thus, considering one mole of a 

perfect gas of volume v, the adsorption potential is: 
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𝜀 =  ∆𝐹 = ∫ 𝑉𝑑𝑃 = 𝑅 ⋅ 𝑇 ⋅ 𝑙𝑛(
𝑃𝑜
𝑃
)

𝑃𝑜

𝑃

 

 

5.6 

 

where ∆𝐹 is the free energy change and 𝑃𝑜 is the saturated vapor pressure. The 

volume adsorbed, according to Polanyi’s Theory, is: 

 

𝑊 = 𝑛 ⋅ 𝑉𝑚 5.7 

 

where n: number of moles adsorbed per unit mass of sorbent, Vm: molar volume 

The characteristic curve is plotted by using these two equations (5.6 & 5.7). That is 

by plotting    𝑛 ⋅ 𝑉𝑚 𝑣𝑠 𝑅 ⋅ 𝑇 ⋅ 𝑙𝑛 (
𝑃𝑜

𝑃
). 

In 1967, based on Polanyi’s theory [145], Dubinin proposed an adsorption model 

known as the theory of micropores filling [146]. This theory states that the adsorbate 

fills the pore volume in microporous solids and does not form distinct layers in the 

pores see Figure 5.4. Coal is one of the microporous adsorbents, which means that 

the adsorption process is not limited only to the surface but also to the volume filling.  

 

Figure 5.4. A schematic representation of adsorption mechanisms, (A) Langmuir 

model, (B) B.E.T model and (C) Dubinin model. (Figure is modified from R.M. 

Flores [99]) 
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Later on, Dubinin and Astakhov (D-A) [147] proposed a model derived by energy 

balance where gas is filled in the micropores of adsorbent 

The model can be expressed as: 

𝑛𝑎𝑑𝑠 = 𝑛𝑚𝑎𝑥 ⋅ 𝑒
−((

𝑅⋅𝑇
𝛽⋅𝐸𝑜

)
𝑛

)⋅(ln(
𝑃𝑜
𝑃
))
𝑛

 

 

                                                          5.8 

where 𝑛𝑎𝑑𝑠   is the amount adsorbed, 𝑛𝑚𝑎𝑥 is the adsorption capacity in micropores 

(micropores volume). 𝑅 is the gas constant, 𝑇 is the temperature, 𝛽 is the affinity 

coefficient, 𝐸0 is the heat of adsorption, 𝑃𝑜 is the saturated vapor pressure, and 𝑛 is 

the heterogeneity parameter ranging from 1 to 4, indicating the degree of 

heterogeneity in the material.  

Dubinin and Radushkevich (D-R) restricted 𝑛 = 2 for some. Thus the D-R model is 

expressed as: 

𝑛𝑎𝑑𝑠 = 𝑛𝑚𝑎𝑥 ⋅ 𝑒
−((

𝑅⋅𝑇
𝛽⋅𝐸𝑜

)
𝑛

)⋅(ln(
𝑃𝑜
𝑃
))

2

 
5.9 

 

In a simpler form, it can be written as: 

𝑛𝑎𝑑𝑠 = 𝑛𝑚𝑎𝑥 ⋅ 𝑒
−𝐷(ln(

𝜌𝑎
𝜌𝑔

))
2

 
 

       5.10 

 

where the parameter 𝐷 = (
𝑅⋅𝑇

𝛽⋅𝐸𝑜
)
 

 is related to coal affinity for CO2.  𝛽 Is the affinity 

coefficient between CO2   and the coal, (𝛽 = 0.35 for CO2) and 𝐸𝑜 is the characteristic 

heat of adsorption. 

For the adsorption of CO2 in coal, the original D-R model can be modified to include 

a correction factor that enables it to be used with excess adsorption 

𝑛𝑒𝑥 = 𝑛𝑚𝑎𝑥 ⋅ (1 −
𝜌𝑔

𝜌𝑎
) ⋅ 𝑒

−𝐷(ln(
𝜌𝑎
𝜌𝑔

))
2
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To account for volumetric changes in coal samples, the additional k-term was 

added to the model, and the resulting expression is: 

𝑛𝑒𝑥 = 𝑛𝑚𝑎𝑥 ⋅ (1 −
𝜌𝑔

𝜌𝑎
) ⋅ 𝑒

−𝐷(ln(
𝜌𝑎
𝜌𝑔

))
2

+ 𝑘 ⋅ 𝜌𝑔 
5.12 

 

Ozdemir and his colleagues adjusted the D-A model to account for volumetric 

effects such as coal swelling by [148] : 

D-A model by Ozdemir and co-workers 

𝑛𝑒𝑥 = 𝑛𝑚𝑎𝑥 ⋅ (1 −
𝜌𝑔

𝜌𝑎
) ⋅ 𝑒

−((
𝑅⋅𝑇
𝛽⋅𝐸𝑜

)
𝑛

)⋅(𝑙𝑛(
𝑃𝑜
𝑃
))
𝑛

+ 𝜌𝑔 ⋅ ∆𝑉 
 5.13 

 

Other studies [134], [135] proposed a new D-R modified model that can describe gas 

adsorption at supercritical conditions. A proportionality term k was added to describe 

different effects, including Henry’s law dissolution of gas, errors of cell volume and 

helium density, penetration of various gases, rock swelling and shrinkage effects 

[135].  

The D-R modified +k model is given by: 

 

𝑛𝑒𝑥 = 𝑛𝑚𝑎𝑥 ⋅ (1 −
𝜌𝑔

𝜌𝑎
) ⋅ 𝑒

−((
𝑅𝑇
𝛽𝐸𝑜

)
2

)⋅(𝑙𝑛(
𝜌𝑎
𝜌𝑔

))
2

+ 𝑘 ⋅ 𝜌𝑔 

 

5.14 

 

where 𝜌𝑎 , 𝜌𝑔  are the adsorbate density and free gas density, respectively, k is the 

proportionality constant.  
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5.5 Excess adsorption concept  

The actual adsorbed amount cannot be measured by the volumetric methods. This is 

because volumetric methods do not account for the volume occupied by the adsorbed 

phase, as shown in Figure 5.5. Gibbs [149] defines the excess adsorbed amount 𝑛𝑒𝑥 

as the amount of gas calculated to have adsorbed if the volume of adsorbed phase, 

𝑉𝑎 is ignored.  

 

Figure 5.5. The schematic description of gas adsorption on coal matrix. 

There are two forces involved in adsorption systems, between molecules themselves 

and between adsorbent and molecules. When these two forces come in equilibrium, 

they form an imaginary invisible layer at some distance x (see Figure 5.6) from the 

adsorbent surface. Any gas molecules between the adsorbent surface and the layer 

are held by the adsorbent force. In general, as molecules of the free gas phase 

approach the adsorbent surface, their density will change as a function of distance. 

Area A symbolizes molecules with a density greater than the free gas density. Area 

B symbolizes the hypothetical case in which the density of free gas does not change 

as molecules approach the surface of the solid. As a result, the excess adsorption is 
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represented by area A. the absolute adsorption is the area A+B, which represent all 

gas molecules held in the adsorption field by the adsorbent forces [50], [150], [151].   

 

Figure 5.6. The Gibbs model's interpretation with a density profile against distance 

from the adsorbent surface. (Figure is modified from Gumma and Talu [152]) 

 

Mathematically absolute adsorption can be written as:   

Γ𝑎𝑏𝑠 = ∫(𝜌(𝑥)) 𝑑𝑥

∞

0 

 

5.15 

However, this integral diverges. Therefore, this prompted Gibbs to introduce the 

adsorption excess theory [152]. He assumed that at a certain distance x from the 

adsorbent’s surface, the adsorption field created by the solid becomes negligible, and the 

density of the adsorbed molecules becomes equal to the density of the free gas phase 

[153]. Therefore, he defined the excess adsorption as: 

Γ𝑒𝑥 = ∫ (𝜌(𝑥) − 𝜌𝑔)𝑑𝑥

𝑥

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑡 
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The lower limit is assumed to be zero, which corresponds to the surface of the solid. By 

making x large enough, the density function will eventually be reduced to the free gas 

phase. Hence the value of x, in this case, will be infinity,  

The following expression is Excess adsorption:  

Γ𝑒𝑥 = ∫(𝜌(𝑥) − 𝜌𝑔)𝑑𝑥

∞

0 

 

5.16 

For rigid solids,  

𝑛𝑎𝑏𝑠 = 𝑛𝑡 − 𝜌𝑉𝑣𝑜𝑖𝑑 

  

where ρ is the molar density of the gas in the free space, 𝑛𝑡  the total moles of gas 

transferred into the sample cell, and Vvoid is the void volume in the sample cell.  

Gibbs excess adsorption equation models [134]: 

𝑛𝑒𝑥 = 𝑛𝑎𝑏𝑠 − 𝜌𝑔𝑉𝑎  

where 𝑣𝑎  is the volume of the adsorbed phase. 

𝑛𝑒𝑥 = 𝑛𝑎𝑏𝑠 + 𝜌𝑔 (−
𝑛𝑎𝑏𝑠

𝜌𝑎
)                                                        5.17 

 

where  𝜌𝑎 is the density of the adsorbed phase. 

The shape of the density function shown in Figure 5.6 is not necessarily correct; 

some studies have shown that in the interfacial region, the density may be higher or 

even lower than the free gas density [149], [151]–[155].  

There is not yet any rigorous ways to determine the adsorbed density. In this study, 

the tentative density was determined from the graphical method, as explained in 

Appendix C. This method is based on equation 5.17; the excess number of moles 

will become zero when the free gas density increases and reach the adsorbed phase 

density. Therefore, by plotting the density versus the excess number of moles 

adsorbed, we can determine the adsorbed phase density by looking at the intercept 
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of the linear part of the density profile where excess moles become zero [150]. This 

density is then used as the initial point for the adsorption modelling optimizations.  

5.6 Effects of coal rank and moisture on adsorption  

Bustin and Clarkson [156], performed an adsorption study on a series of Australian 

coals; the objective of their study was to quantify the effects of coal composition, 

coal rank and gas content on methane adsorption; they found a good correlation 

between coal vitrinite content and the micropore capacity. Chikatamarla and 

Crosdale [157], performed experiments on dry coals from various coal ranks, from 

high volatile bituminous coal to anthracite. They found that mineral matter content 

decreases the adsorption capacity. Moreover, in high bituminous coal, the adsorption 

capacity increases with the vitrinite content, whereas in low bituminous coal, there 

was no clear correlation observed. Yalcin and Gurdal [158], investigated the 

correlation between coal properties and gas adsorption capacity. They performed 

experiments on 81 coal ranging from medium to high bituminous coals. However, 

there was no consistent trend in methane adsorption capacity with coal composition 

or ranks. Busch et al. [159] studied the adsorption behaviour of various coal from 

the argonne premium coal program with vitrinite reflectance ranging from 0.25 to 

1.68 %. They observed that at low pressures, the adsorption increases with coal rank, 

especially for wet coals. This is because higher-ranking coals have more surface area 

than low ranking coals. Gareth et al. [160] found that rank is critical in the adsorption 

process of coal. In the bituminous and anthracite coals, the highest methane 

adsorption was observed on the highest ranking coals. However, there was no 

positive correlation between sub-bituminous coal and methane adsorption capacity. 

Hildenbrand et al. [161], using a computational method to study the methane sorption 

capacity of central European coals they found that sorption storage capacity 

increases with coal rank for moist coal, agreeing with previous studies  

In another study, Day et al. [162] investigated the relationship between coal 

properties and Supercritical CO2 sorption capacity. They experimented 30 different 
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coals, mainly from Australia, the USA and Poland, at 16 MPa and 53 °C in a 

gravimetric apparatus. They found a weak correlation between CO2 adsorption and 

coal compositions. They concluded that CO2 sorption capacity could not reliably be 

determined based on the coal rank. Ozdemir and Schroeder [163] studied the 

influence of moisture on coal. They found that the adsorption on dried coal gives a 

U shape relationship when plotted with coal rank, but for the moist or wet coal 

samples, there was an almost linear relationship between coal rank and adsorption. 

Zhang et al. [55], also found the U-shaped relationship between adsorption capacity 

and coal rank on four dry coal samples from China. Yves and Busch  [74] presented 

a conceptual model to describe the competitive adsorption between CO2 and CH4 

behavior on wet coals of different coal ranks. Concerning the coal rank, they found 

that sorption on dry coals increases up to a point and decreases with increasing the 

rank, displaying a parabolic-shaped behavior. The study also showed that the gas 

sorption on moist coals increases linearly with the rank.  

Nie et al. [164], studied the sorption properties of four dry coals with different ranks. 

They found that the maximum adsorption capacity on dry coal samples displays a U-

shaped curve when plotted against the coal rank. The same dry coals were placed 

under constant humidity to adsorb moisture on an equal basis. They observed that 

the adsorption for wet coals decreased compared to the dry coals. In addition, they 

also confirmed a positive linear relationship with coal ranks. Deyond and Xiaojie 

[130] tested 11 coals with various ranks, and their study was to find factors that 

influence gas adsorption capacity. They found that the volume adsorbed increased 

with vitrinite reflectance. In addition to this, Debadutta et al. [165] also tested several 

coals from Raniganj coalfield, and they found that the vitrinite reflectance had a 

strong relation (𝑅 = 0.7) with the Langmuir volume. The reason for such a positive 

correlation is that higher-ranking coals have more surface area than low ranking coal. 

As the coalification process continues, the reduction of water and cracking of the 

clog up oils reopens the micropores systems and increases the adsorption sites 

In 1997, Levy et al. [166] studied the Bowen coals’ methane adsorption capacity and 

the influence of coal properties on adsorption. Concerning the moisture effects, they 
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observed that as the coals’ moisture content increased from 0.9-3.7 percentage of 

weight, the adsorption decreased linearly at approximately five ml/g at every 1 % 

increase in moisture. Ozdemir and Schroeder [163] studied the effects of moisture 

content on adsorption isotherms on Argonne premium coals. They found the 

adsorption on wet coals samples are much less than in dry coals. They attribute this 

behavior to the filling or blocking of the pore space by water molecules that would 

otherwise be available for CO2 molecules. Guo et al. [167] performed experiments 

on low-rank coals from Shenbei and Tiefa coalfields in China. They studied the 

effects of moisture content on adsorptions. Their study’s key finding was that: The 

more the moisture content, the fewer adsorption sites available for the adsorbing gas. 

Water preferentially adsorb on oxygen and nitrogen functional groups in coal, 

resulting in decreased adsorption sites available for CO2. Water could also adsorb 

CO2, forming what is known as “water clusters”. These clusters would reduce the 

adsorption potential of CO2 as well. However, they also found that as the moisture 

content increases and reach a particular value, its effects on adsorption are not clear 

and may no longer be the primary factor affecting the adsorption.  
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CHAPTER 6  

6 EXPERIMENTAL METHODOLOGY 

In this study, the volumetric (manometry) method was used to measure adsorption. 

This method is commonly used because it is inexpensive and easy to implement 

compared to other approaches. The setup consists of a reference cell and a sample 

cell. The gas is injected into the reference cell, and then it is expanded into the sample 

cell containing the sample. The number of adsorbed moles are calculated by 

measuring the pressure drop and using real gas state equations.  

6.1 Experimental setup 

The experimental design schematic and the actual photo of the setup are given in  & 

Figure 6.2. The description of each component is also provided in Table 6.1. The 

setup consists of a high-pressure sample cell and a Reference cell of 75 cc and 71 cc, 

respectively. These cells are made from brass and can handle high pressure up to 280 

bars. 

 

Figure 6.1. Volumetric adsorption experiment diagram.  
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Figure 6.2. Volumetric experimental setup. 

Sample cell (v
sa

) 

Pressure gauge 

Expansion valve 

To the vacuum pump 

Master valve 

Vacuum valve 

Connection to the gas supply 

Reference cell (Vrf) 
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Table 6.1. Components of the volumetric method used in this study 

 

 

 

 

Components Description 

 

Gas Cylinders 

Two gas cylinders, He of purity of 99.5-100 %, from Praxair, 

Inc.  CO2  from Linde plc of purity of 99.9 %, 

 

Tubing and Fittings 

stainless steel (SS) 1/8” and a 1/16” tubing, purchased from 

Swagelok 

 

Valves 

Two types of Valves were both purchased from the Hamlet 

company. A two-way H-6800-SS-L-1/8-RCSS type and a two-

way H-99. 

Reference and Sample 

Cells 

These cells were self-fabricated from brass material. They 

could handle pressure up to 280 bars. 

 

 

Pressure Gauge 

LEO1 Digital Manometer. Range -1 to 150 Bar with an 

accuracy of less than 0.2 % FS and peak reading mode at 5kHz 

was purchased from Keller AG company. Operating 

temperature 0 to 50 °C, 3 V internal battery of type CR 2430 

for up to 1,000 hours operation (150 hours in peak mode) and 

IP65 Protection. 

 

Water Bath 

The constant temperature water bath was purchased from 

DAIHAN Scientific Co.Ltd, model WiseCircu WCB-22, temp. 

range & accuracy: ambient＋5℃~ 100℃, ±0.1℃ accuracy 

 

Vacuum Pump 

A vacuum pump, E5zA2B-053/Busch SV 1005 D, was 

purchased from Hanning Elektro-Werke. 

 

Filter Papers 

Filter papers were purchased from the fann instrument 

company. Their sizes were 3.5 inches or 9 cm in diameter 
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6.2 Coal sample preparation 

As shown in Figure 6.3 — Figure 6.6, the four coal samples from Soma, Tunçbilek, 

Tekirdağ-Saray and Afşin-Elbistan basin, were used in this study. Before the 

experiments, the samples were first hand-crushed to have the same particle size. The 

crushed sample instead of a whole coal lump or bigger particles is important because 

it minimizes diffusion time for adsorption [168]. First, each coal sample was crushed 

in a mortar and pestle, shown in Figure 6.7. The sample was screened using different 

meshes of different sizes (see Figure 6.8). The sizes of meshes are as follows: No: 

10 (2 mm), 18 (1 mm), 35 (0.5 mm), 60 (0.250mm), 120 (0.125 mm), 230 (0.063 

mm). A sieve shaker (Figure 6.9) was used to shake coal particles for 20 minutes to 

obtain coal powders with the expected coal particle size. A certain mass (as shown 

in Appendix A) of (0.250 mm) coal powder was made for each sample's adsorption 

experiment. 

 

  

Figure 6.3. Soma coal sample Figure 6.4. Tunçbilek coal sample 
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Figure 6.5. Tekirdağ-Saray coal Sample Figure 6.6. Afşin-Elbistan coal sample 

 

After sieving, samples were placed in the oven, as shown in Figure 6.10, to remove 

surface and inherent moisture. They were heated up to 110 °C for 36 hours before 

being loaded into the sample cell. Samples must be prevented from accumulating 

any moisture before they can be loaded into the sample cells because adsorption is 

greatly affected by moisture content.  

 

 

 

Figure 6.7. The mortar and pestle Figure 6.8. The sieves  
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Figure 6.9. The sieve shaker. Figure 6.10. The drying oven 

The proximate and ultimate analysis of the four coal samples was conducted by ELI 

(Ege Linyit Isletmeleri) laboratory, according to TS 4744 and TS 5122 standards. 

Both analyses are presented in Table 6.2 & Table 6.3. In the table, the letters mean 

C: Carbon, H: Hydrogen, N: Nitrogen, O: Oxygen, FC: Fixed Carbon NCV: Net 

Calorific Value, M: Moisture Content and VM: Volatile Matter. All the data 

presented here are evaluated on a dry basis.  

Table 6.2. Proximate analyses and vitrinite reflectance values of the coal samples  

COAL SEAM Vitrinite reflectance 

(%) Ro 

Ash* 

(%) 

VM*   

(%) 

NCV* 

(kcal/kg) 

FC (%)* 

Soma 0.35-0.48 [169] 8.53 41.41 6346 50.06 

Tunçbilek 0.42 -0.51 [87] 24.44 34.16 5725 41.4 

Tekirdağ-Saray  0.24–0.37 [170] 19.09 43.87 5099 37.04 

Afşin-Elbistan 0.21 to 0.28 [171] 41.86 51.22 1916 6.92 

*Determined by ELI laboratories according to TS 4744 and TS 5122  

*All values on a dry basis 
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Table 6.3. Ultimate analyses of coal samples  

COAL SEAM C (%)* H (%)* O (%)* S (%)* N (%)* 

Soma 68.88 4.65 15.10 1.57 1.27 

Tunçbilek 59.55 4.20 7.27 1.94 2.60 

Tekirdağ-Saray  56.51 4.14 15.75 3.24 1.27 

Afşin-Elbistan 29.59 1.97 24.15 1.97 0.46 

*Determined by ELI laboratories according to TS 4744 AND TS 5122  

*All values on a dry basis 

6.3 Volumetric experimental procedure 

After the sample was transferred into the sample cell and connections between the 

sample cell and the reference cell have been made, the whole setup is then put into 

the constant temperature water bath at 40 °C. Before measuring adsorption 

isotherms, the system was checked for pressure leaks using helium. When no leak 

was detected for about 5-8 hours, then we proceeded with the experiment.  

Before starting the experiment, the system was first evacuated from any gas that may 

be trapped inside. The vacuum pump was used to remove any gas trapped inside. 

The procedure shown in Figure 6.11 are explained in details as follows: 

STEP 1 

 All valves in the system (as seen in Figure 6.11) are closed, and pressure in 

the reference cell is equal to the sample cell's pressure. 

 A certain amount of gas is allowed into the reference cell by opening the 

master valve until the desired pressure is reached and the master valve is 

closed. 

 Few minutes are allowed for pressure and temperature equilibration in the 

reference cell.  
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STEP 2 

 The expansion valve is then opened, allowing the gas to flow from the 

reference cell to the sample cell.  

STEP 3 

 The adsorption starts and the pressure values are recorded every 5 

minutes.  

STEP 4 

 When pressure remains constant for about 20 minutes, the pressure is 

recorded as the equilibrium pressure. 

For the second injection  

Once the equilibrium pressure is recorded, the expansion valve is closed. 

1) The master valve is opened to increase pressure in the reference cell. 

2) The experiment is repeated from step 1 to step 4. 

By measuring pressure values before and after expansion, both in the sample cell and 

the reference cell, the amount of gas adsorbed at each pressure level is calculated. 

The adsorption isotherm is constructed by repeating these procedures until the 

highest desired gas pressure measurement is achieved.  

Closing procedure for all the experiments  

1) Once the experiment finishes, gas in the system and connections is vented out  

2) Gas cylinders are closed, and the temperature bath is turned off. 

3) After the sample was removed from the cell, both sample and reference cells 

were dried in the drying oven at 110 °C for about 30 minutes. 

4) The new sample is then loaded in the sample cell, and the same procedure from 

step 1 to step 4 is repeated. 
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Figure 6.11. Procedure for gas adsorption using a volumetric method. 

6.3.1 Void volume estimation 

The void volume includes the pipe volume, reference cell volume, sample cell 

volume unoccupied by the sample, and matrix pore volume. Generally, helium is 

widely used for the determination of the void volume. The reason is that helium has 

a relatively small molecular size which allows penetrating small pores that would 

otherwise not be reached by bigger molecules. In addition to this, helium is generally 

considered non-adsorbing gas on coals [133].  

The empty volume of sample and reference cells were estimated using the helium 

expansion method. Similarly, after the sample is loaded in the sample cell, the void 

volume is estimated using equation 6.1 (the derivation of this equation is found in 

Appendix A):  
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𝑉𝑣𝑜𝑖𝑑(𝑛) =

𝑃𝑛
𝑍𝑛

−
𝑃𝑒𝑞𝑛
𝑍𝑒𝑞 𝑛

𝑃𝑒𝑞𝑛
𝑍𝑒𝑞𝑛

−
𝑃𝑒𝑞(𝑛−1)
𝑍𝑒𝑞(𝑛−1)

⋅ 𝑉𝑟𝑓 

 

 

6.1 

 

where 𝑃𝑛  is the pressure in the reference cell, bars, and 𝑍𝑛  is the compressibility 

constant at pressure 𝑃𝑛, 𝑃𝑒𝑞(𝑛−1) is the Equilibrium pressure of the previous step 

and 𝑍𝑒𝑞(𝑛−1) is compressibility constant at pressure 𝑃𝑒𝑞(𝑛−1). 

The estimation of the void volume was carried out using helium injection, and the 

interval of pressure was between 10 and 100 bars.  Equation 6.1 was then re-written 

as 𝑉𝑣𝑜𝑖𝑑 = (
𝑎

𝑏
) ⋅ 𝑉𝑟𝑓, by plotting a against b, the slope was obtained. Therefore by 

multiplying slope with the reference volume 𝑉𝑟𝑓  the void volume is found. The 

compressibility constant for helium at any temperature was estimated by using the 

Sudibandrio equation 6.2 [172]  

𝑍𝐻𝑒 = 1 +
1471 ⋅ 10−6  −  4779 ⋅ 10−9 ⋅ 𝑇 +  4 92 ⋅ 10−11 ⋅ 𝑇 

𝑃
 

6.2 

 

where T is the temperature in Kelvin, P is the pressure in bars. 

6.3.2 Adsorption capacity estimation 

The adsorption capacity was also measured in the same way as the void volume. The 

gas law expression was used to estimate the void volume. This expression is 

universal, and by calculating the value of Z at every pressure injection, it can be 

applied to supercritical conditions. 

𝑃 ⋅ 𝑉 = 𝑍 ⋅ 𝑛 ⋅ 𝑅 ⋅ 𝑇                                                              6.3 

where P is the pressure in the closed system, V is the volume in this closed system, 

Z is the compressibility factor, n is the number of moles of free gas in this closed 

system, R and T are both the gas universal constant and temperature in this closed 

system respectively.  
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Initially, for the first injection, the reference cell was filled by CO2, and the gas law 

in the reference cell is expressed:  

𝑃1 ⋅ 𝑉𝑟𝑓 = 𝑍1 ⋅ 𝑛𝑖𝑛𝑗𝑒𝑐𝑡 ⋅ 𝑅 ⋅ 𝑇                                                 6.4 

where 𝑃1 is the pressure in reference cell, 𝑉𝑟𝑓    is the volume of the reference cell, 

𝑍1 is the gas compressibility factor at the pressure 𝑃1, 𝑛𝑖𝑛𝑗𝑒𝑐𝑡  is the moles of gas 

injected in the reference cell.  

When we open the expansion valve, the gas is expanded to the sample cell, and this 

continues until the equilibrium is reached. The gas law in equilibrium condition is:  

𝑃𝑒𝑞1 ⋅ (𝑉𝑟𝑓 + 𝑉𝑣𝑜𝑖𝑑) = 𝑍𝑒𝑞1 ⋅ 𝑛𝑓𝑟𝑒𝑒 ⋅ 𝑅 ⋅ 𝑇 6.5 

The mass balance for the first injection is:  

𝑛𝑖𝑛𝑗𝑒𝑐𝑡 = 𝑛𝑓𝑟𝑒𝑒 + 𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 

 

6.6 

Where 𝑛𝑖𝑛𝑗𝑒𝑐𝑡  are the moles of gas injected in the reference cell, 𝑛𝑓𝑟𝑒𝑒    are the 

moles of free gas in both cells at the equilibrium condition, 𝑛𝑎𝑑𝑠𝑜𝑏𝑟𝑒𝑑  are the moles 

of gas adsorbed in the coal matrix in the equilibrium condition.  

𝑃𝑒𝑞1 ⋅ (𝑉𝑟𝑓 + 𝑉𝑣𝑜𝑖𝑑) = 𝑍𝑒𝑞1 ⋅ 𝑛𝑓𝑟𝑒𝑒 ⋅ 𝑅 ⋅ 𝑇 

𝑃1 ⋅ 𝑉𝑟𝑓 = 𝑍1 ⋅ 𝑛𝑖𝑛𝑗𝑒𝑐𝑡 ⋅ 𝑅 ⋅ 𝑇  

𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 = 𝑛𝑖𝑛𝑗𝑒𝑐𝑡 − 𝑛𝑓𝑟𝑒𝑒  

Therefore, moles adsorbed for the first injection are given by 

𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 =
𝑉𝑟𝑓

𝑅𝑇
⋅ (
𝑃1
𝑍1

−
𝑃𝑒𝑞1

𝑍𝑒𝑞1
) − (

𝑃𝑒𝑞1

𝑍𝑒𝑞1
 ) ⋅

𝑉𝑣𝑜𝑖𝑑
𝑅𝑇

 
 

6.7 

For the second injection step, 

𝑛𝑖𝑛𝑗𝑒𝑐𝑡 + 𝑛𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑛𝑓𝑟𝑒𝑒 + 𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 

where 𝑛𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  denotes the number of moles existing in the sample before the second 

injection.  
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For the second injection, we will have  𝑃  &  𝑍   are the new pressure injection and 

compressibility constant on the second step. 𝑃𝑒𝑞   &  𝑍𝑒𝑞   are the equilibrium 

pressure and gas compressibility of the second step. 

Similarly, for the second step, we will have:  

𝑃 ⋅ 𝑉𝑟𝑓 = 𝑍 ⋅ 𝑛𝑖𝑛𝑗𝑒𝑐𝑡 ⋅ 𝑅 ⋅ 𝑇 

𝑃𝑒𝑞 ⋅ (𝑉𝑟𝑓 + 𝑉𝑣𝑜𝑖𝑑) = 𝑍𝑒𝑞 ⋅ 𝑛𝑓𝑟𝑒𝑒 ⋅ 𝑅 ⋅ 𝑇 

𝑃𝑒𝑞1 ⋅ (𝑉𝑣𝑜𝑖𝑑) = 𝑍𝑒𝑞1 ⋅ 𝑛𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ⋅ 𝑅 ⋅ 𝑇 

Rearranging equations to give the number of moles adsorbed 

𝑛𝑖𝑛𝑗𝑒𝑐𝑡 + 𝑛𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 − 𝑛𝑓𝑟𝑒𝑒 = 𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 

Calculation of moles adsorbed from the second step   

𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 =
𝑉𝑟𝑓

𝑅 ⋅ 𝑇
⋅ (
𝑃 
𝑍 

−
𝑃𝑒𝑞 

𝑍𝑒𝑞 
) − (

𝑃𝑒𝑞 

𝑍𝑒𝑞 
−
𝑃𝑒𝑞1

𝑍𝑒𝑞1
) ⋅

𝑉𝑣𝑜𝑖𝑑
𝑅 ⋅ 𝑇

 
      

        6.8 

The total moles adsorbed at the second pressure injection is Step 1+ Step 2: 

𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 = 

𝑉𝑟𝑓

𝑅𝑇
⋅ (
𝑃1
𝑍1

−
𝑃𝑒𝑞1

𝑍𝑒𝑞1
) − (

𝑃𝑒𝑞1

𝑍𝑒𝑞1
 ) ⋅

𝑉𝑣𝑜𝑖𝑑
𝑅𝑇

 

+ 

𝑉𝑟𝑓

𝑅 ⋅ 𝑇
⋅ (
𝑃 
𝑍 

−
𝑃𝑒𝑞 

𝑍𝑒𝑞 
) − (

𝑃𝑒𝑞 

𝑍𝑒𝑞 
−
𝑃𝑒𝑞1

𝑍𝑒𝑞1
) ⋅

𝑉𝑣𝑜𝑖𝑑
𝑅 ⋅ 𝑇
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The total moles adsorbed at the third pressure injection, Step 1+ Step 2+ Step 3  

𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 = 

𝑉𝑟𝑓

𝑅𝑇
⋅ (
𝑃1
𝑍1

−
𝑃𝑒𝑞1

𝑍𝑒𝑞1
) − (

𝑃𝑒𝑞1

𝑍𝑒𝑞1
 ) ⋅

𝑉𝑣𝑜𝑖𝑑
𝑅𝑇

 

+ 

𝑉𝑟𝑓

𝑅 ⋅ 𝑇
⋅ (
𝑃 
𝑍 

−
𝑃𝑒𝑞 

𝑍𝑒𝑞 
) − (

𝑃𝑒𝑞 

𝑍𝑒𝑞 
−
𝑃𝑒𝑞1

𝑍𝑒𝑞1
) ⋅

𝑉𝑣𝑜𝑖𝑑
𝑅 ⋅ 𝑇

 

+ 

𝑉𝑟𝑓

𝑅 ⋅ 𝑇
⋅ (
𝑃3
𝑍3

−
𝑃𝑒𝑞3

𝑍𝑒𝑞3
) − (

𝑃𝑒𝑞3

𝑍𝑒𝑞3
−
𝑃𝑒𝑞 

𝑍𝑒𝑞 
) ⋅

𝑉𝑣𝑜𝑖𝑑
𝑅 ⋅ 𝑇

 

The number of moles adsorbed at any pressure is given by: 

𝑛𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑(𝑛) = (∑(
𝑃𝑖
𝑍𝑖
−
𝑃𝑒𝑞𝑖

𝑍𝑒𝑞𝑖
)

𝑛

𝑖=1

) ⋅
𝑉𝑟𝑓

𝑅 ⋅ 𝑇
− (

𝑉𝑣𝑜𝑖𝑑
𝑅 ⋅ 𝑇

⋅
𝑃𝑒𝑞𝑛

𝑍𝑒𝑞𝑛
) 

 

6.9 
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CHAPTER 7  

7 RESULTS AND DISCUSSION 

7.1 Excess adsorption capacity  

The experimentally measured amounts of CO2 were plotted against the equilibrium 

pressure. These isotherms represent the excess number of moles (𝑛𝑒𝑥). The excess 

number of moles, as explained in section 5.5, is the amount of gas calculated to have 

adsorbed if the volume of adsorbed phase, 𝑉𝑎 is ignored [173]. Figure 7.1 shows 

excess adsorption isotherms of the Soma (SO), Tunçbilek (TU), Tekirdağ-Saray (TS) 

and Afşin-Elbistan (AFE) samples.  

 

Figure 7.1. Excess adsorption isotherms of the four coal samples. 
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As expected, with increasing pressure, the amount adsorbed (excess adsorption) 

increases, goes through a maximum and then decreases (see Figure 7.1). The reason 

for this behavior is that in volumetric experiments, the adsorbed phase volume is not 

accounted for in the calculation.  

In the experiment, the sample cell's equilibrium pressures were measured, and the 

number of moles in the sample cell is calculated by multiplying pressure with the 

void volume (see equation 6.9). This equation assumes that the void volume is 

constant, but the adsorbed phase occupies part of the initial void volume in reality. 

This causes an error in the estimation of the number of moles in the free gas phase.  

Therefore, in reality, the number of moles in the free gas phase is over-estimated, 

and the number of moles in the adsorbed phase is under-estimated. This 

underestimation is proportional to the difference between the adsorbed phase density 

and free gas density. Once the adsorbed phase's density is determined, this under-

estimation is corrected, and consequently, the absolute adsorption isotherms are 

obtained (see Figure 7.6 ). 

 Initially, the densities of both the adsorbed phase and free gas molecules increase 

with pressure. However, the adsorbed phase's density tends to increase faster towards 

a maximum value [174]. At some point, the difference between both densities 

reaches a maximum, which corresponds to the maximum point in the excess 

adsorption isotherm.  

7.2 Adsorption modelling  

In this study, the Langmuir and D-R models were selected based on their success in 

many studies done, particularly on coal [132], [134], [136], [145], [175]–[180]. In 

order to fit these models to the experimental data, one needs to introduce an error 

function. There are many error functions used in the literature [181], [182]. In this 

study, the Average Relative Error (ARE) was used to determine the best fit model.  
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The expression is given by:  

ARE =
100

𝑁
∑(

|𝑛𝑒𝑥𝑝 − 𝑛𝑚𝑜𝑑𝑒𝑙|

𝑛e p
)
𝑖

𝑁

𝑖=1

 

 

7.1 

 

where N, is the number of experiments, 𝑛𝑒𝑥𝑝 the experimental data and 𝑛𝑚𝑜𝑑𝑒𝑙  is 

the number of moles estimated by the model. The Microsoft (MS) Excel solver tool 

was employed to minimize the sum of errors between the model and the experimental 

data. The model that gives the minimum sum indicates the best fit. 

Among all the models, the D-R–modified model was found to be the best fitting 

model; it showed the minimum deviation from the experimental data. All the fitted 

parameters for all the models are given in appendix G, and the parameters for the D-

R modified model are presented in Table 7.1.  

Table 7.1. Fitted parameters for D-R–modified model 

 
𝒏𝒎𝒂𝒙 

(mmol/g) 

𝑫 

(coal affinity 

to CO2) 

𝝆𝒂 

(mol/cc) 

ARE 

(%) 

Soma 1.95 0.776 0.0113 4.92 

Tunçbilek 1.90 0.897 0.0126 3.74 

Tekirdağ-Saray  1.22 0.117 0.0075 5.92 

Afşin-Elbistan 0.63 0.127 0.0072 5.06 

 

It should be noted that the parameter k, which accounts for the volumetric changes 

in coal (i.e. swelling, contraction) and possible errors in estimating the void volume 

and the cell volume [135], was found to be zero for all cases. This indicates that those 

errors or changes have no significant effect on experimental results under this study's 

conditions. Sakurov et al. studied CO2 adsorption in coals up to 200 bars and 

indicated that the k-term for the D-R–modified+k model is significant for high 

pressures [135].  
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Other researchers (e.g., [136], [145], [162], [178], [179]) who worked with high 

pressure up to around 200 bars, also reported a non-zero value for the k-term. On the 

other hand, the incremental pressure of about 85 bars, which is the maximum 

pressure used in this study’s experiments, is not high enough to experience the effects 

of these volumetric changes. 

7.2.1 Model fitting procedure  

The initial guesses provided for fitting by MS Excel were obtained as follows: 

1) At every pressure experiment repeated, the density of the bulk gas versus excess 

adsorbed moles was plotted. 

2) From the density profile, the initial guess for adsorbed phase density (𝜌𝑎,𝑖)  is 

estimated (see appendix C). 

4) By inserting 𝜌𝑎,𝑖 into equation 5.17, the 𝑛𝑎𝑏𝑠 values can be estimated.  

5) The maximum value of 𝑛𝑎𝑏𝑠 is used as the initial guess value for 𝑛𝑚𝑎𝑥  

6) For Langmuir models, the initial guess for 𝜌𝐿 was estimated as the density 

corresponding to half of  𝑛𝑚𝑎𝑥. 
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7.3 The excess adsorption isotherms 

The excess adsorption isotherms of coal samples are displayed in Figure 7.2— 

Figure 7.5.  

 

Figure 7.2. Excess adsorption modelling for Soma coal sample 

 

Figure 7.3. Excess adsorption modelling for Tunçbilek coal sample. 
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Figure 7.4. Excess adsorption modelling for Tekirdağ-Saray coal sample 

 

 

Figure 7.5. Excess adsorption modelling for Afşin-Elbistan coal sample 
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Figure 7.6 shows that Soma and Tunçbilek coals show the highest adsorption 

capacity for CO2, whereas Afşın-Elbistan coal has the least. It can also be seen that 

AFE coal has already reached its maximum capacity at around 50 bars. 

 

Figure 7.6. Absolute adsorption isotherms for all coal samples 

 

Table 7.2. Comparison of CO2 adsorption capacity and vitrinite reflectance 

 

Coal samples 

𝒏𝒎𝒂𝒙  

(mmol/g-coal)* 

Vitrinite 

Reflectance % Ro 

 

FC (%)* 

Soma 1.78 0.35—0.48 50.06 

Tunçbilek 1.43 0.42 —0.51 41.4 

Tekirdağ-Saray  0.987 0.24—0.37 37.04 

Afşın-Elbistan 0.366 0.21—0.28 6.92 

*measured on a dry basis (not ash-free) 

 

Fixed carbon is the organic part in coal that provides the surface area for molecules 

to adsorb; it is known that the higher the fixed carbon content, the higher the 
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adsorption capacity [183]. This behavior can also be observed in Table 7.2. The coals 

with a higher percentage of fixed carbon have higher adsorption capacity.  

The 𝑛𝑚𝑎𝑥 appears to increase with the vitrinite reflectance. Vitrinite macerals are the 

indicators of maturity in a particular type of coal. As the coal undergoes coalification, 

these shiny macerals change their reflectance properties. By looking at their 

reflectance values, Tunçbilek and Soma coal samples are almost similar in maturity, 

while the Afşin-Elbistan sample remains the most immature (low quality) of them 

all.  Accordingly, one can conclude that there is a positive correlation with 𝑛𝑚𝑎𝑥 and 

vitrinite reflectance. 

7.4 Coal-seam storage capacity estimation  

Different studies have been done to estimate the storage capacity of coal seams [29], 

[184], [185]. In this study, the following expression has been used: 

 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑓𝑟𝑒𝑒 𝑔𝑎𝑠 + 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 𝑔𝑎𝑠 

 

7.2 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑉𝑐𝑜𝑎𝑙 ⋅ ∅ ⋅
𝑆𝑔

𝐵𝑔
+ 𝑉𝑐𝑜𝑎𝑙 ⋅ 𝜌𝑐𝑜𝑎𝑙 ⋅ (1 − ∅) ⋅ 𝑛𝑚𝑎𝑥 ⋅ (1 − 𝑎 −𝑚) 

where 𝑉𝑐𝑜𝑎𝑙 is the volume of the coal seam (m3), 𝑆𝑔 is the gas saturation,  𝐵𝑔 is the 

gas formation factor,  𝜌𝑐𝑜𝑎𝑙 is the density of coal (g/cc), 𝑛𝑚𝑎𝑥  the maximum storage 

capacity of coal estimated from the models (mmol/g)  ∅  is the cleat porosity, and 

𝑎 & 𝑚  are ash content and moisture content, respectively.  

The cleat porosity of coal is assumed to be less than 1 % [63], [186]. Generally, for 

minable coal, the density values range between 1.25 g/cc to 1.70 g/cc, increasing 

with the rank of coal. 
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 Seidle [63] gives a method of estimating coal density in the absence of laboratory 

measurements.  

𝜌𝑐𝑜𝑎𝑙 =
1

1 − 𝑎 − 𝑤
𝜌𝑜

+
𝑎
𝜌𝑎𝑠

+
𝑤
𝜌𝑤

 

 where:  

𝜌𝑐𝑜𝑎𝑙 = coal bulk density, g/cc, 

𝜌𝑜 = organic fraction density, g/cc, 

𝜌𝑎𝑠 = ash density, g/cc,  

𝜌𝑤 = water density, g/cc, assumed to be 1 g/ cc 

𝑎 = ash content, %  

𝑤 = moisture content, % 

Seidle [63] suggests that the organic and ash densities for reservoir engineering 

purposes can be assumed to be 1.25 and 2.55 g/cc, respectively.  

Arnold [98] suggests that the free gas saturation in the cleats can be taken as 10 %. 

The gas formation volume factor (𝐵𝑔) can be calculated as follows [187]: 

𝐵𝑔 = 
𝑉

𝑉𝑆𝐶
=
𝑃𝑠𝑐
𝑃
⋅
𝑇

𝑇𝑠𝑐
⋅
𝑍

𝑍𝑠𝑐
 

where: 

 𝑃𝑠𝑐 : Pressure at standard condition (1.013 bars) 

𝑃 : Pressure at Reservoir condition (bars) 

𝑇𝑠𝑐 : Standard temperature (293.15 K)  

𝑍𝑠𝑐: The compressibility of gas at standard condition  

𝑇: Reservoir temperature, (313.15 K) 
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These storage capacity estimates are significant in reducing the impact of CO2 

emissions in Turkey. To see their impact, we selected a 100 MW coal power plant 

and calculated CO2 emissions. In literature, the average CO2 emissions from coal 

power plants range between 0.58-1.5 kg/kWh [188]. The value of 1 kg/kWh for coal 

power plants was used as suggested by Sinayuc [66].  

For 100 MW power plant, assuming the availability of 70 %, it will produce  

Energy (kWh/year)  =  100 ⋅ 1000 ⋅ 365 ⋅ 24 ⋅ 0.7 

Energy =6.15 ⋅ 108 kWh/year, 

By using the emission factor of 1 kgCO2/kWh, we get 0.613 megatons of CO2 

produced annually; Table 7.3 shows the total estimated reserves of each coal basins 

and the amount of CO2 which can be stored in each basin (see also Figure 7.7). 

Based on the estimated storage capacity values, the Soma basin can store all the CO2 

emissions from this power plant for about 102 years, Tunçbilek for 29 years, Afşin 

Elbistan basin for 49 Tekirdağ-Saray for about eight years. 

Table 7.3. Estimated CO2 storage potential for the basins studied 

Coal basin Estimated reserves 

(Mt) [79] 

Specific Storage 

(ktCO2/Mt-coal) 

Estimated Storage 

(Mt CO2) 

Storage potential 

(years) 

Soma  861.45   72.1 62.11 102 

Tunçbilek  317.73  55.8 17.72 29 

Tekirdağ-Saray 141.18   34.8 4.92 8 

Afşin-Elbistan  4642   6.44 29.89 49 
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Figure 7.7. The storage capacity of the four selected coal-basins in Turkey, based 

on their reported reserves 

Figure 7.7 show coal seam storage with respect to the pressure. This storage 

estimation is based on the basin reserves between 2005-2019, as reported in Table 

7.3. Afşin-Elbistan has the biggest reserves, about five times Soma and more than 

ten times that of Tunçbılek; however, one can see that it has a low storage capacity 

compared to Soma. By comparing the fixed carbon and storage capacities, there is a 

positive relationship between the samples. Therefore, it can be concluded that the 

storage capacity is a function of organic components in coal. On the other hand, it is 

essential to note that the values reported represent both minable and possibly non-

minable, considering that minable reserves would be too close to the surface, rightly 

with no confining strata, they are not valid candidates for CCS. Thus, for CCS 

purposes, it is more accurate to use only non-minable coal reserves volumes for 

estimating the storage capacity.  
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CHAPTER 8  

8 SUMMARY AND CONCLUSIONS   

In this study, CO2 adsorption experiments were conducted on samples from four 

different coal (lignite) seams of Turkey, namely Soma, Tunçbilek, Tekirdağ–Saray 

and Afşin–Elbistan. Based on the results of volumetric adsorption experiments 

performed at 40 oC and incremental pressure of around 85 bars, the following is 

concluded: 

 Four different adsorption models (Langmuir modified, Langmuir Modified+k, 

D-R modified and D-R modified +k) were found to fit the experimental data well, 

with an average relative error (ARE) of less than ±7 %.  

 The D-R modified model was the best fit for all coals. 

 Effects of compression & swelling of coal and calculation errors on void volume 

are lumped into the k-terms of the corresponding models. These k-terms turned 

out to be zero per the curve-fit analysis in this study. Therefore, it is not possible 

to conclude if there were any swelling effect under the investigated conditions. 

 Based on the D-R-modified model fit parameters, the maximum adsorption 

capacity (𝑛𝑚𝑎𝑥) of CO2 was found to be 1.95 mmol/g for Soma, 1.9 mmol/g for 

Tunçbilek, 1.22 mmol/g for Tekirdağ-Saray and 0.63 mmol/g for Afşin-Elbistan 

samples (all on “daf” basis).  

 Per Table 7.2 a positive correlation is observed between 𝑛𝑚𝑎𝑥 and both fixed 

carbon (FC) and vitrinite reflectance. 

 Maximum storage capacities of four basins were estimated to be: for Soma basin 

62.1 Mt CO2, for Tunçbilek 17.73 Mt CO2, for Tekirdağ-Saray 4.91 Mt CO2, and 

for Afşin-Elbistan 29.89 Mt CO2. These capacities would correspond to 102, 29, 

8 and 49 years of emissions storage for a hypothetical 100 MW coal power plant, 

for Soma, Tunçbilek, Tekirdağ-Saray and Afşin-Elbistan basins, respectively. 
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CHAPTER 9  

9 RECOMMENDATIONS 

In this study, the maximum incremental pressure reached was about 85 bars, which 

is not necessarily very high, considering the whole range of probable CO2 

sequestration pressures. Therefore, a piston pump or compressor capable of 

achieving high-pressures could be used in order to replicate sequestration conditions 

for deeper coal seams. Moreover, using sensitive pressure transducers would 

increase the accuracy of the measurements. Furthermore, a data acquisition computer 

would allow smoother data collection. 

In this study, the samples were crushed to reduce the time for the diffusion of CO2 

into the coal matrix. However, using larger chunks of coal would be a better 

representation of the actual physical structure of the subsurface rock. Albeit, such 

experiments might take longer for CO2 to diffuse thoroughly into the coal matrix. 

It is known that some coals swell in the presence of an adsorbing gas, such as CO2. 

Even though such effects were not detected in this study, future work with other coal 

samples might point to such mechanism. Therefore, quantifying coal’s volumetric 

changes as pressure increases and how such changes can be minimized should not 

be overlooked. The literature reviewed did not suggest any practical and direct 

method to measure coal swelling. One method to explore would be using the 

Archimedes principle and measuring the amount of water displaced before and after 

the experiments. 

In field storage projects, CO2 injection follows the preliminary production of in-situ 

water and CH4. In the pore space, injected CO2 replaces CH4 gas, which exists 

naturally in a coal-seam. Hence, it is of interest to investigate the competitive 

adsorption of CH4 and CO2 in coals.  
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In addition, herein storage capacities of the coal basins were estimated based on the 

original total amount of coal reserves. Considering that minable reserves would be 

too close to the surface, possibly with no confining strata, they are not valid 

candidates for CCS. Thus, it would be more accurate to use only non-minable coal 

reserves volumes for estimating storage capacity. 

Finally, cap-rock (confining layer) integrity and long-term interaction of CO2 with 

coal would ensure storage project safety and should be investigated. 
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11 APPENDICES 

A. Void volume estimation of the system 

The helium gas was used to determine the void volume in the sample cell. Once the 

sample is loaded in the sample cell, and the leak test is over, all the valves were 

closed, then the following procedures are followed:  

The expansion valve was opened, and the gas is expanded to the sample cell, 

continuing until the equilibrium is reached.  

The gas law in equilibrium condition is:  

𝑃𝑒𝑞1 ⋅ (𝑉𝑟𝑓 + 𝑉𝑠𝑎 − 𝑉𝑠𝑘𝑒) = 𝑍𝑒𝑞1 ⋅ 𝑛𝑒𝑞 ⋅ 𝑅 ⋅ 𝑇 11.1 

 

where 𝑃eq1 is the pressure in an equilibrium state, 𝑉𝑠𝑎 is the sample cell volume, 𝑉ske 

is the sample skeletal volume, 𝑍eq1 is the gas compressibility factor at pressure 𝑃eq1, 

𝑛𝑒𝑞 is the moles of gas in equilibrium condition. 𝑉𝑠𝑎 and 𝑉ske were estimated by 

helium injection. The void volume is calculated as: 

𝑉𝑜𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑉𝑣𝑜𝑖𝑑)  =  𝑉𝑠𝑎 − 𝑉𝑠𝑘𝑒 

Therefore, substituting void volume in equation 11.1, we get:  

𝑃𝑒𝑞1 ⋅ (𝑉𝑟𝑓 + 𝑉𝑣𝑜𝑖𝑑) = 𝑍𝑒𝑞1 ⋅ 𝑛𝑒𝑞 ⋅ 𝑅 ⋅ 𝑇 . 

The second gas injection is injected into the previously injected gas in the first 

injection, and the third and fourth follow the same pattern. 

The mass balance equation can be expressed as:  

𝑛𝑒𝑞 = 𝑛𝑖𝑛𝑗𝑒𝑐𝑡 + 𝑛𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  
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where 𝑛𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 are moles of gas that have been already injected by the previous 

injection steps 𝑛𝑖𝑛𝑗𝑒𝑐𝑡  are the new injected number of moles and 𝑛𝑒𝑞 are the 

equilibrium number of moles for the new step.  

The gas law corresponding to this number of moles are as follows:  

𝑃 ⋅ (𝑉𝑟𝑓 + 𝑉𝑣𝑜𝑖𝑑) = 𝑍 ⋅ 𝑛𝑒𝑞 ⋅ 𝑅 ⋅ 𝑇 

𝑃 ⋅ 𝑉𝑟𝑓 = 𝑍 ⋅ 𝑛𝑖𝑛𝑗𝑒𝑐𝑡 ⋅ 𝑅 ⋅ 𝑇   

𝑃𝑒𝑞 ⋅  𝑉𝑣𝑜𝑖𝑑 = 𝑍𝑒𝑞 ⋅ 𝑛𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ⋅ 𝑅 ⋅ 𝑇   

where 𝑃𝑒𝑞1 &  𝑍𝑒𝑞1 are the equilibrium pressure and gas compressibility from the 

previous step, respectively. The 𝑃  and 𝑍   are the new pressure injection on the 

second step, whereas the 𝑃𝑒𝑞  and 𝑍𝑒𝑞  are the second equilibrium value on the 

second step.  

Therefore, for the second step, we recall that: 𝒏𝒆𝒒 = 𝒏𝒊𝒏𝒋𝒆𝒄𝒕 + 𝒏𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 

𝑃 ⋅  𝑉𝑟𝑓

𝑍 
+
𝑃𝑒𝑞1 ⋅ 𝑉𝑣𝑜𝑖𝑑

𝑍𝑒𝑞1
 

Estimation of the void volume for the second step  

𝑉𝑣𝑜𝑖𝑑 =

𝑃 
𝑍 

−
𝑃𝑒𝑞 
𝑍𝑒𝑞 

  

𝑃𝑒𝑞 
𝑍𝑒𝑞 

−
𝑃𝑒𝑞1
𝑍𝑒𝑞1

⋅ 𝑉𝑟𝑓 

   

11.2 

For multiple n Injections, equation 11.2 becomes: 

𝑉𝑣𝑜𝑖𝑑(𝑛) =

𝑃𝑛
𝑍𝑛

−
𝑃𝑒𝑞𝑛
𝑍𝑒𝑞 𝑛

𝑃𝑒𝑞𝑛
𝑍𝑒𝑞𝑛

−
𝑃𝑒𝑞(𝑛−1)
𝑍𝑒𝑞(𝑛−1)

⋅ 𝑉𝑟𝑓 

The void volume was determined at 40°C (273.15 K). For each pressure point, the 

void volume was determined.  
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The slope function in Microsoft Excel was used to make an average of the void 

volumes at every pressure point. Table 11.1 — Table 11.4 summarize the void 

volume estimation for all the coal samples. They show the details of each 

experiment's sample's weight and the void volume used in adsorption experiments.  

1. Soma sample 

 

Table 11.1. Void volume estimation for Soma samples 

Experiment 
weight 

(g-daf) 

PRF1 

(bars) 

PRF2 

(bars) 

Vvoid 

(cc) 

Average Vvoid 

(cc) 

#1 37.93 

2.3 1.4 45.70 

45.85 

3.3 2 46.20 

3.8 2.3 46.36 

4.3 2.6 46.48 

5.4 3.3 45.23 

6.6 4 46.20 

#2 36.25 

9.9 6.1 44.27 

44.66 

14.2 11.1 44.06 

24.8 19.5 44.84 

34.2 28.5 45.01 

44.6 38.4 44.51 

55.8 49.1 44.50 

63.8 58.1 45.01 

75.8 69 44.34 

#3 37.9 

3.9 2.4 44.43 

45.36 

4.7 2.9 44.12 

5 3.1 43.56 

5.5 3.4 43.90 

5.8 3.6 43.44 

6.2 3.8 44.89 

6.5 4 44.42 

6.9 4.2 45.69 
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1. Tunçbilek Sample 

 

Table 11.2. Void volume estimation for Tunçbilek samples 

Experiments 
Weight 

(g-daf) 

PRF1 

(bars) 

PRF2 

(bars) 
Vvoid (cc) 

Average Vvoid 

(cc) 

#1 22.03 

7.3 4.2 52.46 

52.53 

37.9 21.8 52.49 

45.3 35.3 52.64 

56.5 47.5 52.43 

65.2 57.7 52.26 

74.4 67.3 52.56 

94.4 82.9 52.39 

#2 39.74 

9.3 6 39.09 

39.11 

16.3 12.8 36.58 

21.4 18.4 38.07 

28.6 25.1 37.12 

34.8 31.4 38.35 

47.3 41.7 38.64 

54.5 49.9 39.87 

61.1 57.2 37.97 

73.9 68.1 37.82 

80.7 76.3 38.13 

#3 40.8 

10 6.5 38.27 

39.15 

17.2 13.4 39.14 

20.3 17.9 37.90 

28.6 24.8 39.14 

35 31.4 38.76 

50.3 43.7 38.13 

57.9 52.8 39.83 

65.2 60.8 39.09 

70.1 66.9 37.28 

90.3 82 39.06 
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1. Tekirdağ-Saray Sample 

 

Table 11.3. Void volume estimation for Tekirdağ-Saray samples 

Experiment 
weight 

(g-daf) 

PRF1 

(bars) 

PRF2 

(bars 

Vvoid 

(cc) 

Average Vvoid 

(cc) 

#1 21.036 

63 35 56.85 

56.13 

69.2 54.1 56.18 

73 64.7 55.65 

75.1 70.5 56.36 

81.6 76.7 56.17 

#2 20 

62.7 35 56.25 

56.3 

70.1 54.4 57.51 

74.5 65.6 56.47 

76.3 71.5 57.82 

82 77.3 57.59 

85.6 81.9 57.16 

90.3 86.5 58.71 

93.3 90.4 52.85 

#3 18.6 

56.2 31.4 56.13 

56.4 

73.9 54.9 57.46 

80.3 69.1 56.05 

89.3 80.3 57.11 

93.2 87.5 56.26 
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1. Afşin-Elbistan sample 

 

Table 11.4. Void volume estimation for Afşin-Elbistan samples 

Experiment 
weight 

(g-daf) 

PRF1 

(bars) 

PRF2 

(bars 
Vvoid (cc) 

Average Vvoid 

(cc) 

#1 17.4 

37.1 21.7 50.44 

50.18 

45.6 35.7 50.25 

53.7 46.2 50.76 

64.2 56.7 50.76 

74.3 67 50.37 

80.2 74.7 50.76 

91.5 84.5 50.76 

#2 16.9 

24 14 50.76 

50.48 

30.2 23.5 50.12 

41.6 34.1 50.28 

54.3 45.8 51.63 

63 55.8 51.17 

70.5 64.3 51.84 

#3 18.3 

12 7.1 49.05 

49.99 

17.3 13.1 49.75 

25.6 20.4 50.62 

39.5 31.6 50.13 

42.3 37.8 51.58 

56.2 48.6 50.01 

63.4 57.1 52.67 
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B. Reference and sample cells volume determination 

A helium injection series determined the sample’s empty volumes and reference cells 

from the reference cell to the sample cell. First, the sample cells were empty, and 

then we filled the sample cell with a cylindrical metal disk with a known volume. 

The expansion was carried out in steps from 10 up to 100 bars at 40 °C. 

For an empty system, the equations were: 

For Reference: 𝑃1 ⋅ 𝑉𝑟𝑓 = 𝑍1 ⋅ 𝑛𝑖𝑛𝑗𝑒𝑐𝑡 ⋅ 𝑅 ⋅ 𝑇 

For the equilibrium step: 𝑃𝑒𝑞 . (𝑉𝑟𝑓 + 𝑉𝑠𝑎) = 𝑍𝑒𝑞 ⋅ 𝑛𝑒𝑞 ⋅ 𝑅 ⋅ 𝑇  

𝑛𝑒𝑞 = 𝑛𝑖𝑛𝑗𝑒𝑐𝑡 

(𝑉𝑟𝑓 + 𝑉𝑠𝑎)

𝑉𝑟𝑓
=
𝑃1 ⋅ 𝑍𝑒𝑞

𝑃𝑒𝑞 ⋅ 𝑍1
 

11.3 

 

By plotting 𝑃1 ⋅ 𝑍𝑒𝑞 versus 𝑃𝑒𝑞 ⋅ 𝑍1  we find a linear line with a slope 𝑚1 

We then fill the sample cell with a cylindrical disk of known volume. In this study, 

we used the disk volume (𝑉𝑑𝑖𝑠𝑘) of 16.071 cc.   

The equation 11.3 becomes:  

(𝑉𝑟𝑓 + 𝑉𝑠𝑎 − 𝑉𝑑𝑖𝑠𝑘)

𝑉𝑟𝑓
=
𝑃1 ⋅ 𝑍𝑒𝑞 

𝑃𝑒𝑞 ⋅ 𝑍1
 

By plotting 𝑃1 ⋅ 𝑍𝑒𝑞  versus 𝑃𝑒𝑞 ⋅ 𝑍1  we find a linear line with a slope 𝑚   

Therefore: 

𝑉𝑠𝑎 = 𝑉𝑑𝑖𝑠𝑘 ⋅
−𝑚 

𝑚1 −𝑚 
 

𝑉𝑟𝑓 = 𝑉𝑠𝑎 ⋅ 𝑚1  
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Table 11.5. Reference and sample cell calculations. 

Pressure measurements for an empty system Pressure measurements with a disk in the 

sample cell 

𝑃𝑅𝐹 (bars) 𝑃𝑒𝑞(bars) 𝑚1 𝑃𝑅𝐹(bars) 𝑃𝑒𝑞  (bars) 𝑚  

13.1 6.4 0.489 20.6 11.3 0.549 

19.8 9.7 0.490 29.3 16.2 0.553 

25.8 12.7 0.492 35 19.4 0.554 

33.5 16.5 0.493 43.4 23.8 0.548 

45.1 22 0.488 52 28.4 0.546 

54.3 26.5 0.488 57.2 31.4 0.549 

64 31.2 0.487 64.8 35.6 0.549 

73.9 35.9 0.486 75.1 41.2 0.549 

87.1 42.3 0.486 85.3 46.6 0.546 

94.5 45.8 0.485 93.2 51.1 0.548 

VRF = 71 cc    and    Vs = 75 cc 
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C. Adsorbed density calculation 

The adsorbed density was estimated from equation 5.17. It is clear that when the free 

gas density approaches the value of adsorbed density, the excess adsorption will be 

zero. Therefore, the excess adsorption graph vs density of the free gas was used to 

estimate the density profile intercepts with excess adsorption equal to zero, as shown 

in Figure 11.1. shows the density profiles of the four coal samples. It shows that after 

some point, the function decreases linearly towards zero; therefore, by fitting the 

linear equation to the linear part, we can determine the point where the number of 

moles is zero and taken as adsorbed density. 

 

Figure 11.1. Adsorbed phase density estimation. 
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D. Carbon dioxide properties 

Carbon dioxide is a chemical compound composed of one carbon bonded to two 

oxygen atoms. The most relevant properties to this study and phase diagram are 

given in Table 11.6 and Figure 11.2, respectively. 

Table 11.6. Some properties of carbon dioxide [189] 

Property Value 

Molecular weight 44 g/mol 

Liquid density (at −20 °C, 19.7 bar) 1.032 g/cm3 

Solid density 1.562 g/cm3 

Gas density (at 15 °C, 1.013 bar) 0.002814 g/cm3 

Compressibility factor (Z, at 15 °C, 1.013 bar) 0.9942 

Specific volume (at 21°C, 1.013 bar) 547 cm3/g 

Critical temperature (Tc) 31 °C 

Critical pressure (Pc) 73.825 bar 

Critical density (ρc) 0.464 g/cm3 

Triple point temperature −56.6 °C 

Triple point pressure 5.185 bar 

 

 

Figure 11.2. Phase diagram for CO2 [190] 
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E. Compressibility factor and free gas density for CO2 

At each pressure point, the free gas density see Figure 11.3 was obtained from the 

National Institute of Standards and Technology (NIST-USA) [189].  

 

Figure 11.3. CO2 density against pressure at 40 °C 

The compressibility constant see Figure 11.4  was calculated also based on the 

values extracted from the NIST database [189].  

 
Figure 11.4. Gas compressibility factor (Z-factor) for CO2. 
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F. Excess adsorption experimental data 

All experiments were conducted at 40 °C (313.15 K) 

1. Tunçbilek Coal Sample 

Table 11.7. CO2 adsorption experiment 1 Tunçbilek coal Sample 

Pressure in the 

reference cell 

(bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0 

15.8 7.3 0.48 

23.8 15.9 0.79 

33.4 25.6 1.02 

47.1 38.4 1.16 

55.3 48.7 1.19 

65.2 59.1 1.17 

74.6 69.3 1.08 

82.7 78.7 0.9 

 

Table 11.8. CO2 adsorption experiment 2 Tunçbilek coal Sample 

Pressure in the 

reference cell 

(bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

11.6 3.5 0.46 

25.1 15.3 0.79 

32.6 24.9 1.06 

43.1 36.2 1.20 

51.9 46.6 1.22 

68.5 62.6 1.19 

77.7 74.3 1.02 

82.1 80.6 0.91 
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Table 11.9. CO2 adsorption experiment 3 Tunçbilek coal Sample 

Pressure in the 

reference cell 

(bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

13.5 5.2 0.41 

28.3 17.3 0.83 

31.4 25.1 1.04 

43.7 37 1.15 

52.1 46.7 1.24 

68.4 62.4 1.17 

76.3 72.6 1.07 

82.1 80.3 0.92 

 

2. Afşin-Elbistan coal Sample  

Table 11.10. CO2 adsorption experiment 1 for Afşin-Elbistan coal Sample 

Pressure in the 

reference cell 

(bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity 

(mmol/g) 

0 0 0.00 

13.1 7.3 0.16 

23.6 16.8 0.28 

31 25.2 0.35 

41.5 35.1 0.40 

53.9 46.9 0.41 

62.4 56.8 0.35 

77.5 71.2 0.26 

82.6 79.1 0.21 
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Table 11.11. CO2 adsorption experiment 2 for Afşin-Elbistan coal Sample 

Pressure in the 

reference cell 

(bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

14.3 8.1 0.15 

22.1 16.2 0.26 

33.5 26.6 0.32 

40.3 34.8 0.38 

54.4 47.2 0.35 

65.3 58.9 0.31 

71.4 67 0.24 

81.2 76.9 0.14 

 

Table 11.12. CO2 adsorption experiment 3 for Afşin-Elbistan coal Sample 

Pressure in the 

reference cell 

(bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

15.7 8.8 0.20 

22.5 16.8 0.28 

33 26.5 0.35 

42.9 36.5 0.38 

51.5 45.8 0.37 

63.5 57.2 0.31 

71.3 66.4 0.24 

82.9 78.3 0.12 
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3. Soma Coal Sample 

Table 11.13. CO2 adsorption experiment 1 for Soma coal Sample 

Pressure in the 

reference cell (bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity 

(mmol/g) 

0 0 0.00 

13.3 4.2 0.52 

21 12.7 0.79 

34 24.5 1.07 

44.2 36.3 1.21 

54.4 47.6 1.28 

59.8 55.3 1.31 

65.6 62.1 1.26 

78.1 73.8 1.01 

82.9 80.3 0.83 

 

Table 11.14. CO2 adsorption experiment 2 for Soma coal Sample 

Pressure in the 

reference cell (bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

13.3 4.5 0.50 

23.9 14.6 0.83 

32.6 24.1 1.17 

45 37 1.29 

57.5 50.3 1.34 

59.8 56.5 1.32 

66.6 63.5 1.20 

79.2 75.1 0.92 

81.4 79.5 0.81 
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Table 11.15. CO2 adsorption experiment 3 for Soma coal Sample 

Pressure in the 

reference cell (bars) 

Equilibrium 

Pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

13.6 4.5 0.50 

25.2 15.3 0.83 

30.3 23.4 1.03 

43.2 35 1.23 

50.9 44.9 1.30 

63.5 57.3 1.28 

78.4 73.1 0.97 

83.5 80.8 0.73 

 

4. Tekirdağ-Saray Coal Sample  

Table 11.16. CO2 adsorption experiment 1 for Tekirdağ-Saray coal Sample 

Pressure in the 

reference cell (bars) 

Equilibrium 

Pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

12.1 5.6 0.33 

25.4 16.4 0.57 

33.7 26.1 0.69 

42.9 35.7 0.79 

53.5 46.4 0.77 

63.9 57.3 0.67 

76.1 69.8 0.48 

81.6 77.7 0.31 
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Table 11.17. CO2 adsorption experiment 2 for Tekirdağ-Saray coal Sample 

Pressure in the 

reference cell (bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

17 8.6 0.31 

24.7 17.3 0.48 

33.5 26.3 0.62 

42.9 35.8 0.71 

56.7 48.5 0.71 

63.3 57.6 0.63 

71.8 66.6 0.51 

80.7 76.1 0.33 

 

Table 11.18. CO2 adsorption experiment 3 for Tekirdağ-Saray coal Sample 

Pressure in the 

reference cell (bars) 

Equilibrium 

pressure 

(bars) 

Excess adsorption 

capacity (mmol/g) 

0 0 0.00 

12.1 5.8 0.28 

23.8 15.5 0.49 

32.9 25.1 0.67 

41.8 34.6 0.78 

53.1 45.7 0.78 

65.7 58.3 0.68 

74.3 68.7 0.49 

82.5 78.2 0.26 
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G. Fitted parameters from adsorption models 

Table 11.19. Fitted adsorption model parameters for Soma coal 

 𝒏𝒎𝒂𝒙 

(mmol/g) 

𝝆𝑳 

(mol/cc) 

𝝆𝒂 

(mol/cc) 

k 

(cc/mol) 

ARE 

(%) 

Langmuir–modified 1.98 0.00056 0.0117 - 6.3 

Langmuir–mod.+k 1.98 0.00056 0.0117 0 6.3  

 𝒏𝒎𝒂𝒙 

(mmol/g) 

𝑫 𝝆𝒂 

(mol/cc) 

k 

(cc/mol)  

 ARE 

(%) 

D-R–modified 1.95 0.077 0.0113 - 4.9 

D-R–modified+k 1.95 0.077 0.0113 0 4.9 

 

Table 11.20. Fitted adsorption model parameters for Tunçbilek coal 

 𝒏𝒎𝒂𝒙 

(mmol/g) 

𝝆𝑳 

(mol/cc) 

𝝆𝒂 

(mol/cc) 

k 

(cc/mol) 

ARE 

(%) 

Langmuir modified 1.98 0.00088 0.0135 - 3.8 

Langmuir mod.+k 1.98 0.00088 0.0135 0 3.8 

 𝒏𝒎𝒂𝒙 

(mmol/g) 

𝑫 

 

𝝆𝒂 

(mol/cc) 

k 

(cc/mol) 

ARE 

(%) 

D-R-modified 1.9 0.089 0.0126 - 3.7 

D-R-modified+k 1.9 0.089 0.0126 0 3.7 
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Table 11.21. Fitted adsorption model parameters Tekirdağ-Saray for coal 

 𝒏𝒎𝒂𝒙 

(mmol/g) 

𝝆𝑳 

(mol/cc) 

𝝆𝒂 

(mol/cc) 

k 

(cc/mol) 

ARE 

(%) 

Langmuir modified 1.43 0.0009 0.0075 - 5.96 

Langmuir mod.+k 1.43 0.0009 0.0075 0 5.96 

 𝒏𝒎𝒂𝒙 

(mmol/g) 

𝑫 

 

𝝆𝒂 

(mol/cc) 

k 

(cc/mol) 

ARE 

(%) 

D-R-modified 1.22 0.12 0.0075 - 5.92 

D-R-modified+k 1.22 0.12 0.0075 0 5.92 

 

Table 11.22. Fitted adsorption model parameters for Afşin-Elbistan sample 

 𝒏𝒎𝒂𝒙 

(mmol/g) 

𝝆𝑳 

(mol/cc) 

𝝆𝒂 

(mol/cc) 

k 

(cc/mol) 

ARE 

(%) 

Langmuir modified 0.79 0.00106 0.00714 - 4.94 

Langmuir mod.+k 0.79 0.00106 0.00714 0 4.94 

 𝒏𝒎𝒂𝒙 

(mmol/g) 

𝑫 

 

𝝆𝒂 

(mol/cc) 

k 

(cc/mol) 

ARE 

(%) 

D-R-modified 0.63 0.127 0.00725 - 5.06 

D-R-modified+k 0.63 0.127 0.00725 0 5.06 
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